
A Decision Procedure for Bit-Vectors and Arrays

Vijay Ganesh and David L. Dill

Computer Systems Laboratory
Stanford University

{vganesh, dill} @cs.stanford.edu

Abstract. STP is a decision procedure for the satisfiability of quantifier-free for-
mulas in the theory of bit-vectors and arrays that has been optimized for large
problems encountered in software analysis applications. The basic architecture
of the procedure consists of word-level pre-processing algorithms followed by
translation to SAT. The primary bottlenecks in software verification and bugfind-
ing applications are large arrays and linear bit-vector arithmetic. New algorithms
based on the abstraction-refinement paradigm are presented for reasoning about
large arrays. A solver for bit-vector linear arithmetic is presented that eliminates
variables and parts of variables to enable other transformations, and reduce the
size of the problem that is eventually received by the SAT solver.
These and other algorithms have been implemented in STP, which has beenheav-
ily tested over thousands of examples obtained from several real-worldapplica-
tions. Experimental results indicate that the above mix of algorithms along with
the overall architecture is far more effective, for a variety of applications, than
a direct translation of the original formula to SAT or other comparable decision
procedures.

1 Introduction

Decision procedures for fragments of first-order logic are increasingly being used in
modern hardware verification and theorem proving tools. These decision procedures
usually support integer and real arithmetic, uninterpreted functions, bit-vectors, and ar-
rays. Examples of such decision procedures include Yices, SVC, CVC Lite,UCLID [9,
3, 2, 13]. Although theorem-proving and hardware verification have been the primary
users of decision procedures, increasingly they are being used in large-scale program
analysis, bug finding and test generation tools [7, 16]. These tools often symbolically
analyze code and generate constraints for the decision procedure to solve, and use the
results to guide analysis or generate new test cases.

Software analysis tools create demands on decision procedures that are different
from those imposed by hardware applications. These applications often generate very
large array constraints, especially when tools choose to model system memory as one or
more arrays. Also, software analysis tools need to be able toreason about bit-vectors,
and especially mod-2n arithmetic, which is an important source of incorrect system
behavior. The constraint problems are large and extremely challenging to solve.

This paper reports on STP, a decision procedure for quantifier-free first order logic
with bit-vector and array datatypes [17]. The design of STP is has been driven primar-
ily by the demands of software analysis research projects. STP is being used in several

software analysis, bug finding and hardware verification applications. Notable applica-
tions include the EXE project [7] at Stanford, which generates test cases for C programs
using symbolic execution, and uses STP to solve the constraints. Other projects include
the Replayer project [16] and Minesweeper [5] at Carnegie Mellon University which
produce constraints from symbolic execution of machine code, and the CATCHCONV
project [14] at Berkeley which tries to catch errors due to type conversion in C pro-
grams. The CATCHCONV project produced the largest example solved by STP so far.
It is a 412 Mbyte formula, with 2.12 million 32 bit bit-vectorvariables, array write terms
which are tens of thousands of levels deep, a large number of array reads with non-
constant indices (corresponding to aliased reads in memory), many linear constraints,
and liberal use of bit-vector functions and predicates, andSTP solves it in approx. 2
minutes on a 3.2GHz Linux box.

There is a nice overview of bit-vector decision procedures in [6], which we do not
repeat here. STP’s architecture is different from most decision procedures that support
both bit-vectors and arrays [18, 2, 9], which are based on backtracking and a framework
for combining specialized theories such as Nelson-Oppen [15]. Instead, STP consists
of a series of word-level transformations and optimizations that eventually convert the
original problem to a conjunctive-normal form (CNF) formula for input to a high-speed
solver for the satisfiability problem for propositional logic formulas (SAT) [10]. Thus,
STP fully exploits the speed of modern SAT solvers while alsotaking advantage of
theory-specific optimizations for bit-vectors and arrays.In this respect, STP is most
similar to UCLID [13].

The goal of this paper is to describe the factors that enable STP to handle the large
constraints from software applications. In some cases, simple optimizations or a careful
decision about the ordering of transformations can make a huge difference in the capac-
ity of the tool. In other cases, more sophisticated optimizations are required. Two are
discussed in detail: An on-the-fly solver for mod-2n linear arithmetic, and abstraction-
refinement heuristics for array expressions. The rest of thepaper discusses the archi-
tecture of STP, the basic engineering principles, and then goes into more detail about
the optimizations for bit-vector arithmetic and arrays. Performance on large examples
is discussed, and there is a comparative evaluation with Yices [9], that is well-known
for its efficiency.

2 STP Overview

STP’s input language has most of the functions and predicates implemented in a pro-
gramming language such as C or a machine instruction set, except that it has no floating
point datatypes or operations. The current set of operations supported includeTRUE ,
FALSE , propositional variables, arbitrary Boolean connectives, bitwise Boolean op-
erators, extraction, concatenation, left and right shifts, addition, multiplication, unary
minus, (signed) division and modulo, array read and write functions, and relational op-
erators. The semantics parallel the semantics of the SMTLIBbit-vector language [1]
or the C programming language, except that in STP bit-vectors can have any positive
length. Also, all arithmetic and bitwise Boolean operations require that the inputs be of
the same length. STP can be used as a stand-alone program, andcan parse input files in

a special human readable syntax and also the SMTLIB QFUFBV32 syntax [1]. It can
also be used as a library, and has a special C-language API that makes it relatively easy
to integrate with other applications.

STP converts a decision problem in its logic to propositional CNF, which is solved
with a high-performance off-the-shelf CNF SAT solver, MiniSat [10] (MiniSat has a
nice API, and it is concise, clean, efficient, reliable, and relatively unencumbered by
licensing conditions). However, the process of convertingto CNF includes many word-
level transformations and optimizations that reduce the difficulty of the eventual SAT
problem. Problems are frequently solved during the transformation stages of STP, so
that SAT does not need to be called.

STP’s architecture differs significantly from many other decision procedures based
on case splitting and backtracking, including tools like SVC, and CVC Lite [3, 2],
and other solvers based on the Davis-Putnam-Logemann-Loveland (DPLL(T)) archi-
tecture [11]. Conceptually, those solvers recursively assert atomic formulas and their
negations to a theory-specific decision procedures to checkfor consistency with for-
mulas that are already asserted, backtracking if the current combination of assertions is
inconsistent. In recent versions of this style of decision procedure, the choice of formu-
las to assert is made by a conventional DPLL SAT solver, whichtreats the formulas as
propositional variables until they are asserted and the decision procedures invoked.

Architectures based on assertion and backtracking invoke theory-specific decision-
procedures in the “inner loop” of the SAT solver. However, modern SAT solvers are
very fast largely because of the incredible efficiency of their inner loops, and so it is
difficult with these architectures to take the best advantage of fast SAT solvers.

STP on the other hand does all theory-specific processingbeforeinvoking the SAT
solver. The SAT solver works on a purely propositional formula, and its internals are
not modified, including the highly optimized inner loop. Optimizing transformations
are employed before the SAT solver when they can solve a problem more efficiently
than the SAT solver, or when they reduce the difficulty of the problem that is eventually
presented to the SAT solver.

DPLL(T) solvers often use Nelson-Oppen combination [15], or variants thereof, to
link together multiple theory-specific decision procedures. Nelson-Oppen combination
needs the individual theories to be disjoint, stably-infinite and requires the exchange
of equality relationships deduced in each individual theory, leading to inflexibility and
implementation complexity. In return, Nelson-Oppen ensures that the combination of
theories is complete. STP is complete because the entire formula is converted by a set of
satisfiability preserving steps to CNF, the satisfiability of which is decided by the SAT
solver. So there is no need to worry about meeting the conditions of Nelson-Oppen
combination. Furthermore, the extra overhead of communication between theories in
the Nelson-Oppen style decision procedures can become a bottleneck for the very large
inputs that we have seen, and this overhead is avoided in STP.

The STP approach is not always going to be superior to a good backtracking solver.
A good input to STP is a conjunction of many formulas that enable local algebraic
transformations. On the other hand, formulas with top-level disjunctions may be very
difficult. Fortunately, the software applications used by STP tend to generate large con-
junctions, and hence STP’s approach has worked well in practice.

 Substitution

Refinement Array Axioms

 Simplifications

 Linear Solving

Input Formula

BitBlast

CNF Conversion

SAT Solver

SAT
UNSAT

Fig. 1.STP Architecture

In more detail, STP’s architecture is depicted in Figure 1. Processing consists of
three phases of word-level transformations; followed by conversion to a purely Boolean
formula and Boolean simplifications (this process is called“Bit Blasting”); and finally
conversion to propositional CNF and solving by a SAT solver.The primary focus of this
paper is on word level optimizations for arithmetic, arraysand refinement for arrays.

Expressions are represented as directed acyclic graphs (DAGs), from the time they
are created by the parser or through the C-interface, until they are converted to CNF. In
the DAG representation, isomorphic subtrees are represented by a single node, which
may be pointed to by many parent nodes. This representation has advantages and dis-
advantages, but the overwhelming advantage is compactness.

It is possible to identify some design principles that have worked well during the
development of STP. The overarching principle is to procrastinate when faced with
hard problems. That principle is applied in many ways. Transformations that are risky
because they can significantly expand the size of the expression DAG are postponed
until other, less risky, transformations are performed, inthe hope that the less risky
transformation will reduce the size and number of expressions requiring more risky
transformations. This approach is particularly helpful for array expressions.

Counter-example-guided abstraction/refinement is now a standard paradigm in for-
mal tools, which can be applied in a variety of ways. It is another application of the
procrastination principle. For example, the UCLID tool abstracts and refines the preci-
sion of integer variables.

A major novelty of STP’s implementation is the particular implementation of the
refinement loop in Figure 1. In STP, abstraction is implemented (i.e. anabstract formula
is obtained) by omitting conjunctive constraints from aconcrete formula, where the
concrete formula must be equisatisfiable with the original formula. (Logical formulas
φ andψ are equisatisfiable iffφ is satisfiable exactly whenψ is satisfiable.)

When testing an abstract formula for satisfiability, there can be three results. First,
STP can determine that the abstracted formula is unsatisfiable. In this case, it is clear
that the original formula is unsatisfiable, and hence STP canreturn “unsatisfiable” with-
out additional refinement, potentially saving a massive amount of work.

A second possible outcome is that STP finds a satisfying assignment to the abstract
formula. In this case, STP converts the satisfying assignment to a (purported) concrete

model,1 and also assigns zero to any variables that appear in the original formula but
not the abstract formula, and evaluates the original formula with respect to the purported
model. If the result of the evaluations isTRUE , the purported model is truly a model
of the original formula (i.e. the original formula is indeedsatisfiable) and STP returns
the model without further refinement iterations.

The third possible outcome is that STP finds a purported model, but evaluating the
original formula with respect to that model returnsFALSE . In that case, STP refines
the abstracted formula by heuristically choosing additional conjuncts, at least one of
which must be false in the purported model and conjoining those formulas with the ab-
stracted formula to create a new, less abstract formula. In practice, the abstract formula
is not modified; instead, the new formulas are bit-blasted, converted to CNF, and added
as clauses to the CNF formula derived from the previous abstract formula, and the re-
sulting CNF formula solved by the SAT solver. This process isiterated until a correct
result is found, which must occur because, in the worst case,the abstract formula will
be made fully concrete by conjoining every formula that was omitted by abstraction.
When all formulas are included, the result is guaranteed to becorrect because of the
equisatisfiability requirement above.

3 Arrays

As was mentioned above, arrays are used heavily in software analysis applications, and
reasoning about arrays has been a major bottleneck in many examples. STP’s input
language supports one-dimensional (non-extensional) arrays [17] that are indexed by
bit-vectors and contain bit-vectors. The operations on arrays areread(A, i), which re-
turns the value at locationA[i] whereA is an array andi is an index expression of the
correct type, andwrite(A, i, v), which returns a new array with the same value asA
at all indices except possiblyi, where it has the valuev. The value of aread is a bit-
vector, which can appear as an operand to any operation or predicate that operates on
bit-vectors. The value of an array variable or an array writehas an array type, and may
only appear as the first operand of aread or write, or as the then or else operand of an
if-then-else. In particular, values of an array type cannotappear in an equality or any
other predicate.

In the unoptimized mode, STP reduces all formulas to an equisatisfiable form that
contains no arrayreads orwrites, using three transformations. (In the following, the
expressionite(c1, e1, e2) is shorthand forif c1 thene1 elsee2 endif.) These transforma-
tions are all standard.

The Ite-lifting transformation convertsread(ite(c,write(A, i, v), e), j) to ite(c,
read(write(A, i, v), j), e). (There is a similar transformation when thewrite is in the
“else” part of theite.) The read-over-write transformation eliminates all write terms
by transformingread(write(A, i, v), j) to ite(i = j, v, read(A, j)). Finally, theread
elimination transformation eliminatesread terms by introducing a fresh bit-vector vari-
able for each such expression, and adding more predicates toensure consistency. Specif-
ically, whenever a termread(A, i) appears, it is replaced by a fresh variablev, and new

1 A model is an assignment of constant values to all of the variables in a formula such that the
formula issatisfied

predicates are conjoined to the formulai = j ⇒ v = w for all variablesw introduced
in place of read termsread(A, j), having the same array term as first operand. As an ex-
ample of this transformation, the simple formula(read(A, 0) = 0) ∧ (read(A, i) = 1)
would be transformed tov1 = 0 ∧ v2 = 1 ∧ (i = 0 ⇒ v1 = v2). The formula of the
form (i = 0 ⇒ v1 = v2) is called anarray read axiom.

3.1 Optimizing array reads

Read elimination, as described above, expands each formulaby up ton(n−1)/2 nodes,
wheren is the number of syntactically distinct index expressions.Unfortunately, soft-
ware analysis applications can produce thousands of reads with variable indices, result-
ing in a lethal blow-up when this transformation is applied.While this blow-up seems
unavoidable in the worst case, appropriate procrastination leads to practical solutions
for many very large problems. Two optimizations which have been very effective are
array substitutionand abstraction-refinement for reads, which we callread refinement.

The array substitution optimization reduces the number of array variables by sub-
stituting out all constraints of the formread(A, c) = e1, wherec is a constant ande1
does not contain another array read. Programs often index into arrays or memory using
constant indexes, so this is a case that occurs often in practice.

The optimization has two passes. The first pass builds a substitution table with the
left-hand-side of each such equation (read(A, c)) as the key and the right-hand-side
(e1) as the value, and then deletes the equation from the input query. The second pass
over the expression replaces each occurrence of a key by the corresponding table entry.
Note that for soundness, if a second equation is encounteredwhose left-hand-side is
already in the table, the second equation is not deleted and the table is not changed. For
example, if STP sawread(A, c) = e1 thenread(A,C) = e2, the second formula would
not be deleted and would later be simplified toe1 = e2.

The second optimization,read refinement, delays the translation of arrayreads with
non-constant indexes in the hope of avoiding read elimination blowup. Its main trick is
to solve a less-expensive approximation of the formula, check the result in the original
formula, and try again with a more accurate approximation ifthe result is incorrect.

Read formulas are abstracted by performing read elimination, i.e., replacing reads
with new variables, but not adding the array read axioms. This abstracted formula is
processed by the remaining stages of STP. As discussed in theoverview, if the result is
unsatisfiable, that result is correct and can be returned immediately from STP. If not,
the abstract model found by STP is converted to a concrete model and the original
formula is evaluated with respect to that model. If the result is TRUE , the answer is
correct and STP returns that model. Otherwise, some of the array read axioms from read
elimination are added to the formula and STP is asked to satisfy the modified formula.
This iteration repeats until a correct result is found, which is guaranteed to happen (if
memory and time are not exhausted) because all of the finitelymany array read axioms
will eventually be added in the worst case.

The choice of which array read axioms to add during refinementis a heuristic that is
important to the success of the method. A policy that seems towork well is to find a non-
constant array index term for which at least one axiom is violated, then add all of the
violated axioms involving that term. Adding at least one false axiom during refinement

guarantees that STP will not find the same false model more than once. Adding all
the axioms for a particular term seems empirically to be a good compromise between
adding just one formula, which results in too many iterations, and adding all formulas,
which eliminates all abstraction after the first failure.

For example, suppose STP is given the formula(read(A, 0) = 0) ∧ (read(A, i) =
1). STP would first apply the substitution optimization by deleting read(A, 0) = 0
from the formula, and inserting the pair(read(A, 0), 0) in the substitution table. Then,
it would replaceread(A, i) by a new variablevi, thus generating the under-constrained
formulavi = 1. Suppose STP finds the solutioni = 1 andvi = 1.

STP then translates the solution to the variables of the original formula to get
(read(A, 0) = 0) ∧ read(A, 1) = 1). This solution is satisfiable in the original for-
mula as well, so STP terminates since it has found a true satisfying assignment.

However, suppose that STP finds the solutioni = 0 andvi = 1. Under this solution,
the original formula eventually evaluates toread(A, 0) = 0 ∧ read(A, 0) = 1, which
after substitution gives0 = 1. Hence, the solution to the under-constrained formula is
not a solution to the original formula.

In this case, STP adds the array read axiomi = 0 ⇒ read(A, i) = read(A, 0).
When this formula is checked, the result must be correct because the new formula in-
cludes the complete set of array read axioms.

3.2 Optimizing array writes

Efficiently dealing with array writes is crucial to STP’s utility in software applica-
tions, some of which produce deeply nested write terms when there are many suc-
cessive assignments to indices of the same array. Theread-over-write transformation
creates a performance bottleneck by destroying sharing of subterms, creating an unac-
ceptable blow-up in DAG size. Consider the simple formula:read(write(A, i, v), j) =
read(write(A, i, v), k), in which thewrite term is shared.

The read-over-write transformation translates this toite(i = j, v, read(A, j)) =
ite(i = k, v, read(A, k)). When applied recursively to the deeply nestedwrite terms,
it essentially creates a new copy of the entire DAG of write terms for every distinct read
index, which exhausts memory in large examples.

Once again, the procrastination principle applies. Theread-over-write transfor-
mation is delayed until after other simplification and solving transformations are per-
formed, except in special cases likeread(write(A, i, v), i+1), where the read and write
indices simplify to terms that are always equal or not equal.In practice, the simple trans-
formations convert many index terms to constants. Theread-over-write transformation
is applied in a subsequent phase. When that happens, the formula is smaller and con-
tains more constants. This simple optimization is enormously effective, enabling STP
to solve many very large problems with nested writes that it is otherwise unable to do.

Abstraction and refinement can also be used on write expressions, when the previous
optimization leaves large numbers ofreads andwrites, leading to major speed-ups on
some large formulas. For this optimization, array read-over-write terms are replaced by
new variables to yield a conjunction of formulas that is equisatisfiable to the original

set. The example above is transformed to:

v1 = v2
v1 = ite(i = j, v, read(A, j))
v2 = ite(i = k, v, read(A, k))

where the last two formulas are calledarray write axioms. For the abstraction, the array
write axioms are omitted, and the abstracted formulav1 = v2 is processed by the
remaining phases of STP. As with array reads, the refinement loop iterates only if STP
finds a model of the abstracted formula that is also not a modelof the original formula.
Write axioms are added to the abstracted formula, and the refinement loop iterates with
the additional axioms until a definite result is produced. Although, this technique leads
to improvement in certain cases, the primary problem with itis that the number of
iterations of the refinement loop is sometimes very large.

4 Linear Solver and Variable Elimination

One of the essential features of STP for software analysis applications is its efficient
handling of linear twos-complement arithmetic. The heart of this is anon-the-flysolver.
The main goal of the solver is to eliminate as many bits of as many variables as possible,
to reduce the size of the transformed problem for the SAT solver. In addition, it enables
many other simplifications, and can solve purely linear problems outright, so that the
SAT solver does not need to be used.

The solver solves for one equation for one variable at a time.That variable can then
be eliminated by substitution in the rest of the formula, whether the variable occurs in
linear equations or other formulas. In some cases, it cannotsolve an entire variable, so
it solves for some of the low-order bits of the variable. After bit-blasting, these bits will
not appear as variables in the problem presented to the SAT solver. Non-linear or word-
level terms (extracts, concats etc.) appearing in linear equations are treated as bit-vector
variables.

The algorithm has worst-case time running time ofO(k2n) multiplications, wherek
is the number of equations andn is the number of variables in the input system of linear
bit-vector equations.2 If the input is unsatisfiable the solver terminates withFALSE .
If the input is satisfiable it terminates with a set of equations in solved form, which
symbolically represent all possible satisfying assignments to the input equations. So, in
the special case where the formula is a system of linear equations, the solver leads to
a sound and complete polynomial-time decision procedure. Furthermore, the equations
are reduced to a closed form that captures all of the possiblesolutions.

2 As observed in [4], the theory of linear mod2n arithmetic (equations only) in tandem with
concatenate and extract operations is NP-complete. Although STP has concatenate and extrac-
tion operations, terms with those operations are treated as independent variables in the linear
solving process, which is polynomial.

A hard NP-complete input problem constructed out of linear operations,concatenate and
extract operations will not be solved completely by linear solving, and will result in work for
the SAT solver.

Definition 1. Solved Form:A list of equations is in solved form if the following invari-
ants hold over the equations in the list.

1) Each equation in the list is of the formx[i : 0] = t or x = t, wherex is a
variable andt is a linear combination of the variables or constant times a variable (or
extractions thereof) occuring in the equations of the list,exceptx

2) Variables on the left hand side of the equations occuring earlier in the list may
not occur on the right hand side of subsequent equations. Also, there may not be two
equations with the same left hand side in the list

3) If extractions of variables occur in the list, then they must always be of the form
x[i : 0], i.e. the lower extraction index must be 0, and all extractions must be of the
same length

4) If an extraction of a variablex[i : 0] = t occurs in the list, then an entry is made
in the list forx = x1@t, wherex1 is a new variable refering to the top bits ofx and@
is the concatenation symbol

The algorithm is illustrated on the following system:

3x+ 4y + 2z = 0

2x+ 2y + 2 = 0

4y + 2x+ 2z = 0

where all constants, variables and functions are 3 bits long.
The solver proceeds by first choosing an equation and always checks if the chosen

equation issolvable. It uses the following theorem from basic number theory to deter-
mine if an equation is solvable:Σn

i=1
aixi = ci mod2b is solvable for the unknownsxi

if and only if the greatest common divisor of{a1, . . . , an, 2
b} dividesci.

In the example above, the solver chooses3x+ 4y+ 2z = 0 which is solvable since
the gcd(3, 4, 2, 23) does indeed divide0. It is also a basic result from number theory
that a numbera has a multiplicative inverse modm iff gcd(a,m) = 1, and that this
inverse can be computed by the extended greatest-common divisor algorithm [8] or a
method from [4]. So, if there is a variable with an odd coefficient, the solver isolates
it on the left-hand-side and multiplies through by the inverse of the coefficient. In the
example, the multiplicative inverse of3 mod8 is also3, so3x + 4y + 2z = 0 can be
solved to yieldx = 4y + 6z.

Substituting4y + 6z for x in the remaining two equations yields the system

2y + 4z + 2 = 0

4y + 6z = 0

where all coefficients are even. Note that even coefficients do not have multiplicative
inverses in arithmetic mod2b, and, hence we cannot isolate a variable. However, it is
possible to solve forsome bitsof the remaining variables.

The solver transforms the whole system of solvable equations into a system which
has at least one summand with an odd coefficient. To do this, the solver chooses an
equation which has a summand whose coefficient has the minimum number of factors
of 2. In the example, this would the equation2y+4z+2 = 0, and the summand would

be 2y. The whole system is divided by 2, and the high-order bit of each variable is
dropped, to obtain a reduced set of equations

y[1 : 0] + 2z[1 : 0] + 1 = 0

2y[1 : 0] + 3z[1 : 0] = 0

where all constants, variables and operations are 2 bits. Next, y[1 : 0] is solved for
to obtainy[1 : 0] = 2z[1 : 0] + 3. Substituting fory[1 : 0] in the system yields a new
system of equations3z[1 : 0]+2 = 0. This equation can be solved forz[1 : 0] to obtain
z[1 : 0] = 2. It follows that original system of equations is satisfiable. It is important to
note here that the bitsy[2 : 1] andz[2 : 1] are unconstrained. The solved form in this
case isx = 4y + 6z ∧ y[1 : 0] = 2z[1 : 0] + 3 ∧ z[1 : 0] = 2 (Note that in the last two
equations all variables, constants and functions are 2 bitslong).

Algorithms for deciding the satisfiability of a system of equations and congruences
in modular or residue arithmetic have been well-known for a long time. However, most
of these algorithms do not provide a solved form that captures all possible solutions.
Some of the ideas presented here were devised by Clark Barrett and implemented in
the SVC decision procedure [12, 4], but the SVC algorithm hasexponential worst-case
time complexity while STP’s linear solver is polynomial in the worst-case.

The closest related work is probably in a paper by Huang and Cheng [12], which
reduces a set of equations to a solved form by Guassian elimination. On the other hand,
STP implements an online solving and substitution algorithm that gives a closed form
solution. Such algorithms are easier to integrate into complex decision procedures.

5 Experimental Results

This section presents empirical results on large examples from software analysis tools,
and on randomly generated sets of linear equations. The effects of abstraction and lin-
ear solving in STP are examined. It is difficult to compare STPwith other decision
procedures, because no publicly available decision procedures except CVCL (from the
authors research group) can deal with terms involving both bit-vectors and arrays in-
dexed by bit-vectors. CVCL is hopelessly inefficient compared with STP, which was
written to replace it. Terms in Yices can include bit-vectors and uninterpreted functions
over bit-vectors. Uninterpreted functions are equivalentto arrays with nowrite opera-
tions, so it is possible to compare the performance of STP andYices on examples with
linear arithmetic and one realistic example with a read-only array.

In Table 1, STP is compared with all optimizations on (All ON), Array Optimiza-
tions on (Arr-ON,Lin-OFF), linear-solving on (Arr-OFF,Lin-ON), and all optimizations
off (ALL OFF) on the BigArray examples (these examples are heavy on linear arith-
metic and array reads). Table 2 summarizes STP’s performance, with and without array
write abstraction, on the big array examples with deeply nested writes. Table 3 compares
STP with Yices on a very small version of a BigArray example, and some randomly
generated linear system of equations. All experiments wererun on a 3.2GHz/2GB RAM
Intel machine running Linux.

Example Name (Node Size)Result All ON Arr-ON,Lin-OFF Arr-OFF,Lin-ON All OFF
testcase15 (0.9M) sat 66 192 64 MO
testcase16 (0.9M) sat 67 233 66 MO
thumbnailout-spin1 (3.2M) sat 115 111 113 MO
thumbnailout-spin1-2 (4.3M)NR MO MO MO MO
thumbnailout-noarg (2.7M) sat 840 MO 840 MO

Table 1. STP performance in different modes over BigArray Examples. Names are followed by
the nodesize. Approximate node size is in millions of nodes. 1M is one million nodes. Shared
nodes are counted exactly once. NR stands for No Result. All timings are inseconds. MO stands
for out of memory error. These examples were generated using the CATCHCONV tool

Example Name (Node Size)Result WRITE Abstraction NO WRITE Abstraction
grep0084 (69K) sat 109 506
grep0095 (69K) sat 115 84
grep0106 (69K) sat 270 > 600
grep0117 (70K) sat 218 > 600
grep0777 (73K) NR MO MO
610dd9dc (15K) sat 188 101
testcase20 (1.2M) sat 67 MO

Table 2.STP performance in different modes over BigArray Examples with deep nested writes.
Names are followed by the nodesize. 1M is one million nodes (1K is thousandnodes). Shared
nodes are counted exactly once. NR stands for No Result. All timings are inseconds. MO
stands for out of memory error.These examples were generated using the CATCHCONV and
Minesweeper tools

Table 1 includes some of the hardest of the BigArray exampleswhich are usually
tens of megabytes of text, typically hundreds of thousands of 32 bit bit-vector vari-
ables, lots of array reads, and large number of linear constraints derived from [14, 16].
The primary reason for timeouts is an out-of-memory exception. Table 1 shows that all
optimizations are required for solving the hardest real-world problems. As expected,
STP’s linear solver is very helpful in solving these examples.

Table 2 includes examples with deeply nested array writes and modest amounts of
linear constraints derived from various applications. The“grep” examples were gener-
ated using the Minesweeper tool while trying to find bugs in unix grep program. The
610dd9c formula is generated by a Minesweeper analysis of a program that is used in
“botnet” attack. The formula testcase20 was generated by CATCHCONV. As expected,
STP with write abstraction-refinement ON can yield a very large improvement over
STP with write abstraction-refinement switched OFF, although it is not always faster.

Yices and STP were also compared on small, randomly-generated systems of linear
equations with coefficients ranging from 1 to216, from 4 to 256 variables of 32 bits
each, and 4 to 256 equations. Yices consistently timed out at200 seconds on exam-
ples with 32 or more variables, and was significantly slower than STP on the smaller
examples. The hardest problem for STP in this set of benchmarks was a test case with

Example STP Yices
25 var/25 equations(unsat) 0.8s 42s
50 var/50 equations(sat) 13sTimeOut
cookie checksum example(sat)2.6s 218s

Table 3.STP vs. Yices. Timeout per example: 600sec. The last example was generated using the
Replayer tool

32 equations and 256 variables of 32 bits, which STP solved in90 seconds. There are
two cases for illustration in Table 3. Yices times out on evena 50 variable 50 equation
example, and when it does finish it is much slower than STP.

There is one large, real example with read-only arrays, linear arithmetic and bit-
vectors which is suitable for comparison with Yices. On thisexample, Yices is nearly
one hundred times slower than STP. Unfortunately, we could not compare Yices with
STP on examples with array writes since Yices does not support array writes with bit-
vector indexing. More meaningful comparisons will have to wait till competing decision
procedures includes bit-vector operations and a theory of arrays indexed by bit-vectors.
All tests in this section are available at
http://verify.stanford.edu/stp.html.

6 Conclusion

Software applications such as program analysis, bug finding, and symbolic simulation
of software tend to impose different conditions on decisionprocedures than hardware
applications. In particular, arrays become a bottleneck. Also, the constraints tend to be
very large with lots of linear bit-vector arithmetic in them. Abstraction-refinement al-
gorithms is often helpful for handling large array terms. Also, the approach of doing
phased word-level transformations, starting with the least expensive and risky transfor-
mations, followed by translation to SAT seems like a good design for decision proce-
dures for the applications considered. Finally, linear solving, when implemented care-
fully, is effective in variable elimination.

Acknowledgements

We are indebted to the following users for their feedback andfor great examples: David
Molnar from Berkeley; Cristian Cadar, Dawson Engler and Aaron Bradley from Stan-
ford; Jim Newsome, David Brumley, Ivan Jaeger and Dawn Song from CMU;

This research was supported by Department of Homeland Security (DHS) grant
FA8750-05-2-0142 and by National Science Foundation grantCNS-0524155. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are those
of the author and do not necessarily reflect the view of the Department of Homeland
Security or the National Science Foundation.

References

1. SMTLIB website: http://www.csl.sri.com/users/demoura/smt-comp/.
2. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity

checker. In R. Alur and D. A. Peled, editors,CAV, Lecture Notes in Computer Science.
Springer, 2004.

3. C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theories with equality.
In M. Srivas and A. Camilleri, editors,Formal Methods In Computer-Aided Design, volume
1166 of Lecture Notes in Computer Science, pages 187–201. Springer-Verlag, November
1996. Palo Alto, California, November 6–8.

4. C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for bit-vector arithmetic. In
Proceedings of the 35th Design Automation Conference, June 1998. San Francisco, CA.

5. D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin.Towards automatically
identifying trigger-based behavior in malware using symbolic execution and binary analy-
sis. Technical Report CMU-CS-07-105, Carnegie Mellon University School of Computer
Science, January 2007.

6. R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and B. Brady. Deciding
bit-vector arithmetic with abstraction. In13th Intl. Conference on Tools and Algorithms for
the Construction of Systems (TACAS), 2007.

7. C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE: Automatically generating
inputs of death. InProceedings of the 13th ACM Conference on Computer and Communica-
tions Security, October-November 2006.

8. T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms, chapter 11,
pages 820–825. MIT Press, 1998.

9. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In Proceedings
of the 18th Computer-Aided Verification conference, volume 4144 ofLNCS, pages 81–94.
Springer-Verlag, 2006.

10. N. Een and N. Sorensson. An extensible sat-solver. InProc. Sixth International Conference
on Theory and Applications of Satisfiability Testing, pages 78–92, May 2003.

11. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Dpll(t): Fast decision
procedures, 2004.

12. C. Huang and K. Cheng. Assertion checking by combined word-level atpg and modular
arithmetic constraint-solving techniques. InDesign Automation Conference (DAC), pages
118–123, 2001.

13. S. K. Lahiri and S. A. Seshia. The uclid decision procedure. In R.Alur and D. Peled, editors,
CAV, volume 3114 ofLecture Notes in Computer Science, pages 475–478. Springer, 2004.

14. D. Molnar, D. Wagner, and S. A. Seshia. Catchconv : A tool for catching conversion errors.
Personal Communications, 2007.

15. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245–257, October 1979.

16. J. Newsome, D. Brumley, J. Franklin, and D. Song. Replayer: Automatic protocol replay by
binary analysis. InIn the Proceedings of the13

th ACM Conference on Computer and and
Communications Security (CCS), 2006.

17. A. Stump, C. Barrett, D. Dill, and J. Levitt. A Decision Procedure for an Extensional Theory
of Arrays. In 16th IEEE Symposium on Logic in Computer Science, pages 29–37. IEEE
Computer Society, 2001.

18. A. Stump, C. W. Barrett, and D. L. Dill. Cvc: A cooperating validity checker. In CAV ’02:
Proceedings of the 14th International Conference on Computer Aided Verification, pages
500–504, London, UK, 2002. Springer-Verlag.

