GROMACS Documentation
Release 2020.7

GROMACS development team

Feb 03, 2022

CONTENTS

1 Downloads 2
1.1 Sourcecode e 2
1.2 Regression tests it e e e e e e e e e e e e e e e e 2

2 Installation guide 3
2.1 Introduction to building GROMACS 3

2.1.1 Quick and dirty installation oL 3
2.1.2 Quick and dirty cluster installation L oL 3
2.1.3 Typicalinstallation e e e e e e e 4
2.1.4 Building older versions Lo e e e e e e e 4
2.2 PrerequiSites e e e e e e e e 4
221 Platform 4
222 Compiler e e 4
2.2.3 Compiling with parallelization options 5
224 CMake e 6
2.2.,5 FastFourier Transform library 6
2.2.6 Other optional build components L Lo 8
2.3 Doing abuild of GROMACS e 8
2.3.1 Configuring withCMake e 8
2.3.2 Compilingand linking L e e e e 15
233 Installing GROMACS 15
234 Getting access to GROMACS after installation 16
2.3.5 Testing GROMACS for COITectness« o v v v v v v v v v vttt 16
2.3.6 Testing GROMACS for performance i i 17
2.3.7 Validating GROMACS for source code modifications 17
2.3.8 Havingdifficulty? 18
2.4 Special instructions for some platforms oL oL 18
24.1 Buildingon Windows L e 18
242 BuildingonCray 19
243 Buildingon Solaris e e e e e e e 19
244 Fujitsu PRIMEHPC 19
245 IntelXeonPhi. L e 19
2.5 Testedplatforms 20
3 User guide 21
3.1 Gettingstarted L L L L e e 21
3.1.1 FlowChart e e e e 21
3.1.2 Setting up your environment out e e e e e e e e e e e e 23
3.1.3 Flowchart of typical simulation 23
3.1.4 TImportantfiles oL e e e e e e e e 23
3.1.5 Tutorial material L. 25
3.1.6 Backgroundreading e 25
3.2 System preparationo i i i u e e e e e e e e e e e e e e 25
32.1 Stepstoconsider e e e e 25

33

34

35

3.6

322 TipsandtrickS e e e e e e e e e e e 26

Managing long simulations L e e e e e e e e e e 27
3.3.1 Appendingtooutputfiles L e 27
332 Backingupyourfiles L 28
333 Extendinga.tprfile 28
334 Changing mdp options forarestart 28
3.3.5 Restarts without checkpointfiles 28
3.3.6 Arecontinuations €Xact?o a e e e e e e 28
3377 Reproducibility 29
Answers to frequently asked questions (FAQs) L oL, 30
3.4.1 Questions regarding GROMACS installation 30
3.4.2 Questions concerning system preparation and preprocessing 30
3.4.3 Questions regarding simulation methodology 31
344 Parameterization and Force Fields 31
3.4.5 Analysis and Visualization 0oL o 32
Force fields in GROMACS e 32
35.1 AMBER . . . e e 32
352 CHARMM e e 33
353 GROMOS . . . e 34
354 OPLS . . e e e 34
Command-line reference L 34
3.6.1 molecular dynamics simulation suite o L 34
3.6.2 @mMXanaeiZ e 39
3.63 gmxanalyzZe L. e e e e e e e e e e 41
3.64 gmxangle L e e e e 44
3,65 gmxawh . ..o 46
3.6.6 gmxbarl e e e 46
3.6.7 gmxbundle e e e e e e 48
3.6.8 gmxcheck. L e e e 50
3,69 gmxchi e e e 51
3.6.10 gmxcluster L e 54
3.6.11 gmxclustsize L e e e e 56
3.6.12 gmxconfrmso e e e e e 58
3.6.13 @MX CONVEIT-IPT . . v v v v v e v e 59
3.6.14 @mX CONVEIt-II] . . . v v v v ot e 59
3.6.15 @mMXCOVATo e e e e 61
3.6.16 gmMXCUITENto e e e 62
3.6.17 gmxdensityo e e e e e e 64
3.6.18 gmXdensmap e 65
3.6.19 gmxdensorder e e e e e e e e e e e 67
3.6.20 gmxdielectric L. L e e e e e 68
3.6.21 gmxdipoles 69
3622 gmX diSIe e e e e e e e 71
3.6.23 gmX diStance e e e e e e e e e e e e e e e e e e 73
3.6.24 gmx do_dsSp e e e e e e e e e e 74
3.6.25 gmX dOS e e e e e e e e e e 75
3,626 gmXx dump L. e e e e e e e e e e e e 77
3.6.27 gmxdyecoupl e e e e 78
3.6.28 gmxeditconf e e 79
3.6.20 GMXENECONV . . . v v v v v et e 81
3,630 @mXenemat e 82
3,631 GMXENETZY . .« « v v v i i e 83
3.6.32 gmxextract-cluster L. 86
3.6.33 gmxfilter e e e 87
3.6.34 gmxfreevolume e e e e e e e e e e 88
3.6.35 gmxgangle L e e e e e e e e e e e 90
3.6.36 gmxgenconf e e e e e e 91
3.6.37 @MX ZENIONl e e e e e e 92

3.6.38
3.6.39
3.6.40
3.6.41
3.6.42
3.6.43
3.6.44
3.6.45
3.6.46
3.6.47
3.6.48
3.6.49
3.6.50
3.6.51
3.6.52
3.6.53
3.6.54
3.6.55
3.6.56
3.6.57
3.6.58
3.6.59
3.6.60
3.6.61
3.6.62
3.6.63
3.6.64
3.6.65
3.6.66
3.6.67
3.6.68
3.6.69
3.6.70
3.6.71
3.6.72
3.6.73
3.6.74
3.6.75
3.6.76
3.6.77
3.6.78
3.6.79
3.6.80
3.6.81
3.6.82
3.6.83
3.6.84
3.6.85
3.6.86
3.6.87
3.6.88
3.6.89
3.6.90
3.6.91
3.6.92
3.6.93
3.6.94
3.6.95

QMX ZENIESIT . . v v v o vt v e 93
EMX EIOMPP « o v v o e e et e 94
GMX EYTAC . o v v v v e 97
gmxh2order. e 98
gmxhbond 99
gmx helix e 101
gmx helixorient L. e 103
gmxhelp e 104
gmx hydorder e 104
gmx insert-moleculeso Lo 105
gmx lie e 106
gmxmake_edi e 107
gmxmake_ndX e e e 110
gmxmdmat e e e e e e e e e e e 111
emX MAIUN . . . Lo e e e e e e e e e e e e e e 112
emx mindiSt e e e 116
gmxmk_angndx L. 117
emxmsd ..o e e e 118
EMXNMEIZ . . o v v vttt e e e e e e e e e e e e e e e e e 119
SMX NMENS .« . v v v v v et v e et e e e e e e e e e e e e e e 121
GMX DML . . v v vt v bt e 121
GMX NMETA] . o v v v e e i e 123
gmx nonbonded-benchmark oL o 123
emMXOrder e e e e e e e 125
emx pairdiSt e e e e e 126
emx pdb2gmxXo e 128
QX PME_EITOT .+ o o o v v e v e 131
GMX POLYSIAL . . o v o e e e e e e e e e e e e e e e 131
gmx potential L L e 132
gmx principalo e e 134
SMXTAMA . o o v v v v v et e e e e e e e e e e e e e e e 134
gmxrdf ..o 135
gmxreport-methods 137
GMXTIMS « . v v v v e e et e 137
emxrmsdist e e 139
gmxrmsf ..o e 140
gmxrotact e e e e 142
EMX TOUMAL . . v v v e et e 143
gmxsaltbr e 144
GMX SANS o v v v v e e v e 144
GMX SASA + v v v v e 146
GMX SAXS v v v v e 147
EMX SEleCt e e e 148
gmx sham e e e e 150
EMX SIZEPS . o v v e 152
gMX SOIVate e e e e e 153
GMX SOTIBNL ot ittt e e e e e e e e e e 154
gmx spatial e 155
gmx spol ..o 157
gmxtcaf e 158
GMXTIA] o v v v v o e 159
EMX rAJECIOTY . . . o v v vt e e e e e e e e e e e e e e e e 161
GMXTLCAL . . L L L e e e 162
EMXLCONV . . o v v ettt i e e e e e e e e e e e e e e e e e 163
gMX trjorder e e e e e e e 167
EMX TUNE_PIME . . o ¢ v v vt v e 168
egmx vanhove L e e e e e 172
gmx velace e 173

3.696 GMX VIEW oL e e e e e e e e e e e e e e e e e e 174

3.6.97 gmxwham e e e e e e e e e e 175
3.6.98 gmxwheel e e 179
3699 @mMXX2MOP oL . e e e e e e e e e e 179
3.6.100 gmX XpM2PS . . . Lt e 181
3.6.101 Command-line interface and conventions 182
3.6.102 Commands by name e e e e e e e e e e 183
3.6.103 Commands by tOpIC v v v i e e e e e e e e e e e e e e 186
3.6.104 Special toPICS . . . v v v v e e e e e e e e e e e e 190
3.6.105 Command changes between versions 198
3.7 Molecular dynamics parameters (mdp options) Lol 203
3.7.1 General information e e 203
3.8 Useful mdrun features e 241
3.8.1 Re-running a simulation e e 241
3.8.2 Running a simulation in reproduciblemode o000 241
3.8.3 Halting running simulations oL e 241
3.8.4 Running multi-simulations L e 242
3.8.5 Controlling the length of the simulation 242
3.9 Getting good performance frommdrun L Lo 243
39.1 Hardware background information Lo oL 243
3.9.2 Work distribution by parallelization in GROMACS 244
3.9.3 Parallelization schemes 244
3.9.4 Running mdrun withinasinglenode, 248
3.9.5 Running mdrun on more thanonenode, 251
39.6 Approaching the scaling limit o 253
39.7 Findingouthow torunmdrunbetter L. 253
39.8 RunningmdrunwithGPUs 255
3.9.9 Running the OpenCL versionof mdrun 258
3.9.10 Performance checklist e 259
3.10 Common errors when using GROMACS 260
3.10.1 Common errors during USagettt e e e e e e 261
3.10.2 Errorsinpdb2gmx e e e 261
3.10.3 Errorsin @rompp o oo i e e e e e e e e e e e e e e e 263
3.104 Errorsinmdruno e e e e 267
301 Terminology o o v o e e e e e e e e e e e e 269
3011 Pressure e e e 269
3.11.2 Periodic boundary conditions o 269
3.11.3 Thermostats o oo e e e e e e e 270
3.11.4 Energy Conservation v v v v v v i e e e e e e e e e e e e e e e e e 272
3015 AVerage StruCtUI® v v v v v e o e 272
3016 Blowingup o . o e e e e e e e e 272
3.11.7 Diagnosing an unstable system oL L o oL 273
3.11.8 Molecular dynamicso e e e e e e e e 274
3.11.9 Forcefield o e 275
3.12 Environment Variables L L e 275
3.12.1 OutputControl e e 275
3.12.2 Debugging e 276
3.12.3 Performance and Run Control 276
3.12.4 OpenCL Management v vt v v it e e e e e e e e e e e e e 279
3.12.5 Analysisand Core Functions 0 i 280
3.13 Floating point arithmetic L e e e e e e e e e 281
3.14 Security when using GROMACS e 282
3.15 Policy for deprecating GROMACS functionality, 282
Short How-To guides 283
4.1 Beginners e e e e 283
411 RESOUICES . . v v v v vt e e e e e e e e e e e e e e e e e e 283
4.2 AddingaResiduetoaForce Field 283

421 Addinganewresidue e e e e e 283

422 Modifyingaforcefield e 284
43 Watersolvationl e e e e e e e e 284
44 Nonwater SOIVENt L it e e e e e e e e e e 284
44.1 Making anon-aqueous solventbox 284
4.5 Mixedsolvent e e e e 285
4.6 Making Disulfide Bonds L e e e e 285
4.7 Running membrane simulations in GROMACS 285
4.7.1 Running Membrane Simulations oL oo 285
4772 Adding waters with genbox oL Lo 286
473 External material 286
4.8 Parameterization of novel molecules oL 286
4.8.1 EXOtiC SPECIeS . . v v v v i i e e e e e e e e e e e 287
4.9 Potentialof Mean Force e 287
4.10 Single-Point Energy e 288
411 CarbonNanotube L e 288
4.11.1 RobertJohnson’s Tips« v v v i i e e e e e e e e e e 288
4.11.2 Andrea Minoia’stutorial L 289
4.12 Visualization Software L e 289
4.12.1 Topology bonds vs Renderedbonds 290
4.13 Extracting Trajectory Information L L 290
4.14 External tools to perform trajectory analysis Lo 290
415 PlottingData e e e e e e e e e e e e e e e 291
4151 Software L e e 291
4.16 Micelle Clustering i i it e e e e e e e e 291
Reference Manual 293
5.1 Prefaceand Disclaimer L e 293
5.1.1 Citation information e 294
5.1.2 GROMACS is Free Software i i ittt it 294
52 Introduction e e e e 295
5.2.1 Computational Chemistry and Molecular Modeling 295
5.2.2 Molecular Dynamics Simulations L o o 296
5.2.3 Energy Minimization and Search Methods 298
5.3 Definitionsand Units L Lo e e e e e e e e 300
531 Notationo o e e e e e 300
532 MDuUnitS e e e e e e 300
533 Reduced units e e e e 301
534 Mixed or Double precision oL e 302
54 Algorithms L e 303
5.4.1 Periodic boundary conditions 303
54.2 Thegroupconcept i e e e e e e 306
543 Molecular Dynamics o i i e e e e e e e e e e e e 307
5.4.4 Shell molecular dynamics L e e e e e 329
54.5 Constraintalgorithms o 330
5.4.6 Simulated Annealing L 333
5.4.7 Stochastic Dynamics 333
54.8 Brownian Dynamics e e e e e e e e e e e e 334
5.4.9 Energy Minimization 0 v it e e e e e e e e e e e 334
5.4.10 Normal-Mode AnalySis e 335
5.4.11 Freeenergy calculations L e 336
54.12 Replicaexchange 339
5.4.13 Essential Dynamics sampling e 340
5.4.14 Expanded Ensemble 341
5.4.15 Parallelization e 341
5.4.16 Domain decompoSition e e e e 341
5.5 Interaction function and force fields L. L L 348
5.5.1 Non-bonded interactions i e e 348

5.6

5.7

5.8

59

5.10

552 Bonded Interactions it i e e e e e e e e e e e e e 353

553 Restraints e e e e e e 364
554 Polarization e e e 373
5.5.5 Freeenergy interactions. it 374
55.6 Methods e e 378
5.5.7 Virtualinteraction Sit€s L e e e e e e 379
5.5.8 LongRange Electrostatics v i it i i e e e e 382
5.5.9 Long Range Van der Waals interactions v o i e 384
55.10 Forcefield e 388
Topologies e e 391
5.6.1 Particletype e 391
5.6.2 Parameterfiles L e 393
5.6.3 Moleculedefinition e 396
5.6.4 Constraintalgorithms 397
5.6.5 pdb2gmxinputfiles e 398
5.6.6 Fileformats 405
5.6.7 Force field organization L. Lo 418
Fileformats o e 421
5.7.1 Summary of file formats L 421
5.7.2 Fileformatdetails e 422
Special TOPICS« o o i e e e e e e e e e e 436
5.8.1 Free energy implementation e 436
5.8.2 Potential of meanforce e 437
5.8.3 Non-equilibrium pulling e 437
5.84 Thepullcode e e e 438
5.8.5 Adaptive biasingwith AWH L 441
5.8.6 EnforcedRotation. L 449
5.87 Electricfields L 459
5.8.8 Computational Electrophysiology 460
5.8.9 Calculating a PMF using the free-energycode 463
5.8.10 Removing fastest degrees of freedom oL 463
5.8.11 Viscosity calculation 466
5.8.12 Tabulated interaction functions oL 467
5.8.13 Mixed Quantum-Classical simulation techniques 469
5.8.14 MiMiC Hybrid Quantum Mechanical/Molecular Mechanical simulations 472
5.8.15 Using VMD plug-ins for trajectory file /O 476
5.8.16 Interactive Molecular Dynamics 476
5.8.17 Embedding proteins into the membranes 4717
5.8.18 Applying forces from three-dimensional densities 478
Run parameters and Programs L L e 481
5.9.1 Online documentation it e e 481
592 Filetypes 481
59.3 RunParameters e 481
AnalySis e e e e e e e e e e e e e 482
5.10.1 Using Groups . . . v v v v v e 482
5.10.2 Looking at your trajectory« . ottt e e e e e e e e e e 485
5.10.3 General propertieso e e e e e e e 485
5.10.4 Radial distribution functions oL 486
5.10.5 Correlation functionso e e e e 486
5.10.6 Curve fitting in GROMACS e 489
5.10.7 Mean Square Displacement e 490
5.10.8 Bonds/distances, angles and dihedrals 0 oL 491
5.10.9 Radius of gyration and distances oL 492
5.10.10 Root mean square deviations in StrUCLUIE« v v v vt vttt 493
5.10.11 Covariance analysiS« v v v v v v e e e e e e e e e e e e e e e e 494
5.10.12 Dihedral principal component analysis oL 496
5.10.13 Hydrogenbonds e 496
5.10.14 Protein-related items L. oL e e e e e e e 497

Vi

5.10.15 Interface-related items L.
5.11 Some implementation details L e e e e e
5.11.1 Single Sum Virial in GROMACS o o
5.11.2 Optimizations ot vttt e e e e e e e
5.12 Averages and fluctuationsl e e
5.12.1 Formulae for averagingo e e
5.12.2 Implementation o .. e e e e e e e e e e e e e e e e e
5.13 Bibliography oL e e e e e e e e
gmxapi Python package
6.1 PythonUserGuide e
6.1.1 Fullinstallation instructions oo e
6.1.2 Using the Pythonpackage
6.1.3 gmxapi Python module reference
6.2 Indicesandtables L e e
Developer Guide
7.1 Contribute to GROMACS e
7.1.1 Checklist o
7.1.2 Preparing code for submission L L e
713 Alternatives Ll e e e e e e e e
7.1.4 Do youhave more questions? oL o
7.1.5 Removing functionality e
7.2 Codebase OVEIVIEW v v v vt v e e i e e e e e e e e
7.2.1 Source code Organizationt e e e e e e e e e e e e e e
7.2.2 Documentation organization o .t i e e e e e e e e e e e e
7.3 Build system overviewo e e e e e e e e e e
7.3.1 Builldtypes e e e e e
7.3.2 CMakecache variables
7.3.3 External libraries e
7.3.4 Special targets o e e e e e e e e e e e e e
7.3.5 Passing informationtosourcecode oo
7.4 GROMACS change managementt
7.4.1 Getting started L. L e
742 CodeReview e
743 FAQS . . o o
744 More ZILPS « . v v i e
7.5 Relocatable binaries L e
7.5.1 Finding shared libraries e
7.5.2 Findingdatafiles e
7.5.3 Knownissues oo v ittt e e e e e e e e e
7.6 Documentation ENeration v v vt e e e e e e e e e e e e e e e e e
7.6.1 Building the GROMACS documentation
7.6.2 Neededbuildtools e
7.7 Style guidelines L e e
7.7.1 Guidelines for code formatting e
7.7.2 Guidelines for #include directives oo
7.7.3 Naming CONVENtionS« v v v vt e e e e e e e e e e e e
7.7.4 Allowed language features oL Lo
7.7.5 Guidelines for creating meaningful redmine issue reports
7.7.6 Guidelines for formatting of gitcommits
77777 Errorhandling e e e e
7.8 Development-time tools L. e e e e e e e
7.8.1 UsingDoxygen e e e
7.8.2 Understanding Jenkins builds L L oL oo
7.8.3 Release engineering with GitLab oo oL,
7.8.4 Source tree checker SCripts o v v i i e e e e e e
7.8.5 Automatic source code formatting Lo

519
519
519
528
533
541

542
542
543
544
544
544
544
545
545
547
548
549
550
554
554
555
555
556
558
559
562
566
566
566
568
568
568
569
570
570
571
572
575
578
579
580
581
581
594
597
597
600

vii

7.8.6 Unittesting o v v vt e e e e e e e 605

7.8.7 Physical validation e e e e e 607

7.8.8 Change management i ittt e e e e e e e e e e e 610

7.8.9 Buildsystem e 610

7.8.10 Code formatting and style L e 610

7.9 Known issues relevant for developers L oL 611
7.9.1 Issues with GPU timer withOpenCL 612

7.9.2 GPUemulationdoesnotwork 612

7.9.3 OpenCL on NVIDIA Volta and laterbroken 612

8 Doxygen documentation 613
Python Module Index 614

viii

GROMACS Documentation, Release 2020.7

The release notes can be found online at http://manual.gromacs.org/current/release-notes/index.html

CONTENTS 1

http://manual.gromacs.org/current/release-notes/index.html

CHAPTER
ONE

DOWNLOADS

Please reference this documentation as https://doi.org/10.5281/zenodo.5938884.

To cite the source code for this release, please cite https://doi.org/10.5281/zenodo.5938877.

1.1 Source code

* As ftp ftp://ftp.gromacs.org/gromacs/gromacs-2020.7.tar.gz
* As https https://ftp.gromacs.org/gromacs/gromacs-2020.7.tar.gz
e (md5sum e130074499873a9df34dad2c8caab263)

Other source code versions may be found at the web site.

1.2 Regression tests

e https://ftp.gromacs.org/regressiontests/regressiontests-2020.7.tar.gz

e (mdSsum 7a4742db1fcd47328bbaf9d47fed3172)

https://doi.org/10.5281/zenodo.5938884
https://doi.org/10.5281/zenodo.5938877
ftp://ftp.gromacs.org/gromacs/gromacs-2020.7.tar.gz
https://ftp.gromacs.org/gromacs/gromacs-2020.7.tar.gz
http://www.gromacs.org/Downloads
https://ftp.gromacs.org/regressiontests/regressiontests-2020.7.tar.gz

CHAPTER
TWO

INSTALLATION GUIDE

2.1 Introduction to building GROMACS

These instructions pertain to building GROMACS 2020.7. You might also want to check the up-to-
date installation instructions.

2.1.1 Quick and dirty installation

1. Get the latest version of your C and C++ compilers.

Check that you have CMake version 3.9.6 or later.

Get and unpack the latest version of the GROMACS tarball.
Make a separate build directory and change to it.

Run cmake with the path to the source as an argument

Run make, make check,andmake install

A R

Source GMXRC to get access to GROMACS
Or, as a sequence of commands to execute:

tar xfz gromacs-2020.7.tar.gz

cd gromacs-2020.7

mkdir build

cd build

cmake .. —-DGMX_ BUILD_OWN_FFTW=ON —-DREGRESSIONTEST_DOWNLOAD=ON
make

make check

sudo make install

source /usr/local/gromacs/bin/GMXRC

This will download and build first the prerequisite FFT library followed by GROMACS. If you already
have FFTW installed, you can remove that argument to cmake. Overall, this build of GROMACS
will be correct and reasonably fast on the machine upon which cmake ran. On another machine,
it may not run, or may not run fast. If you want to get the maximum value for your hardware with
GROMACS, you will have to read further. Sadly, the interactions of hardware, libraries, and compilers
are only going to continue to get more complex.

2.1.2 Quick and dirty cluster installation

On a cluster where users are expected to be running across multiple nodes using MPI, make one
installation similar to the above, and another using ~-DGMX_MP I=on and which is building only
mdrun (page 15), because that is the only component of GROMACS that uses MPI. The latter will
install a single simulation engine binary, i.e. mdrun_mpi when the default suffix is used. Hence it is
safe and common practice to install this into the same location where the non-MPI build is installed.

https://manual.gromacs.org/documentation/current/install-guide/index.html
https://manual.gromacs.org/documentation/current/install-guide/index.html

GROMACS Documentation, Release 2020.7

2.1.3 Typical installation

As above, and with further details below, but you should consider using the following CMake options
(page 9) with the appropriate value instead of xxx :

* -DCMAKE_C_COMPILER=xxx equal to the name of the C99 Compiler (page 4) you wish to
use (or the environment variable CC)

* -DCMAKE_CXX_COMPILER=xxx equal to the name of the C++98 compiler (page 4) you wish
to use (or the environment variable CXX)

e —DGMX_MP I=on to build using MPI support (page 6) (generally good to combine with building
only mdrun (page 15))

* —~DGMX_GPU=on to build using nvcc to run using NVIDIA CUDA GPU acceleration (page 11)
or an OpenCL GPU

e —DGMX_USE_OPENCL=on to build with OpenCL support enabled. GMX_GPU must also be
set.

* —-DGMX_SIMD=xxx to specify the level of SIMD support (page 10) of the node on which GRO-
MACS will run

e —DGMX_BUILD_MDRUN_ONLY=on for building only mdrun (page 15), e.g. for compute clus-
ter back-end nodes

¢ —DGMX_DOUBLE=o0n to build GROMACS in double precision (slower, and not normally use-
ful)

¢ -DCMAKE_PREFIX_PATH=xxx to add a non-standard location for CMake to search for li-
braries, headers or programs (page 11)

¢ —DCMAKE_INSTALL_PREFIX=xxx to install GROMACS to a non-standard location
(page 9) (default /usr/local/gromacs)

e -DBUILD_SHARED_LIBS=0ff to turn off the building of shared libraries to help with szatic
linking (page 13)

e —-DGMX_FFT_LIBRARY=xxx to select whether to use £ ftw3, mk1 or fftpack libraries for
FFT support (page 6)

e -DCMAKE_BUILD_TYPE=Debug to build GROMACS in debug mode
2.1.4 Building older versions
Installation instructions for old GROMACS versions can be found at the GROMACS documentation

page.

2.2 Prerequisites

2.2.1 Platform

GROMACS can be compiled for many operating systems and architectures. These include any dis-
tribution of Linux, Mac OS X or Windows, and architectures including x86, AMD64/x86-64, several
PowerPC including POWERS, ARM v7, ARM v8, and SPARC VIII.

2.2.2 Compiler

GROMACS can be compiled on any platform with ANSI C99 and C++14 compilers, and their re-
spective standard C/C++ libraries. Good performance on an OS and architecture requires choosing a

2.2. Prerequisites 4

https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
http://manual.gromacs.org/documentation
http://manual.gromacs.org/documentation

GROMACS Documentation, Release 2020.7

good compiler. We recommend gcc, because it is free, widely available and frequently provides the
best performance.

You should strive to use the most recent version of your compiler. Since we require full C++14
support the minimum supported compiler versions are

* GNU (gce) 5.1

* Intel (icc) 17.0.1

* LLVM (clang) 3.6

¢ Microsoft (MSVC) 2017

Other compilers may work (Cray, Pathscale, older clang) but do not offer competitive performance.
We recommend against PGI because the performance with C++ is very bad.

The xlc compiler is not supported and version 16.1 does not compile on POWER architectures for
GROMACS-2020.7. We recommend to use the gcc compiler instead, as it is being extensively tested.

You may also need the most recent version of other compiler toolchain components beside the com-
piler itself (e.g. assembler or linker); these are often shipped by your OS distribution’s binutils pack-
age.

C++14 support requires adequate support in both the compiler and the C++ library. The gcc and
MSVC compilers include their own standard libraries and require no further configuration. If your
vendor’s compiler also manages the standard library library via compiler flags, these will be honored.
For configuration of other compilers, read on.

On Linux, both the Intel and clang compiler use the libstdc++ which comes with gcc as the default
C++ library. For GROMACS, we require the compiler to support libstc++ version 5.1 or higher. To
select a particular libstdc++ library, provide the path to g++ with -DGMX_GPLUSPLUS_PATH=/
path/to/g++.

On Windows with the Intel compiler, the MSVC standard library is used, and at least MSVC 2017 is
required. Load the enviroment variables with vcvarsall.bat.

To build with clang and llvm’s libcxx standard library, use -DCMAKE_CXX_-
FLAGS=-stdlib=1libc++.

If you are running on Mac OS X, the best option is the Intel compiler. Both clang and gcc will work,
but they produce lower performance and each have some shortcomings. clang 3.8 now offers support
for OpenMP, and so may provide decent performance.

For all non-x86 platforms, your best option is typically to use gcc or the vendor’s default or recom-
mended compiler, and check for specialized information below.

For updated versions of gcc to add to your Linux OS, see
e Ubuntu: Ubuntu toolchain ppa page
* RHEL/CentOS: EPEL page or the RedHat Developer Toolset

2.2.3 Compiling with parallelization options

For maximum performance you will need to examine how you will use GROMACS and what hard-
ware you plan to run on. Often OpenMP parallelism is an advantage for GROMACS, but support for
this is generally built into your compiler and detected automatically.

GPU support

GROMACS has excellent support for NVIDIA GPUs supported via CUDA. On Linux, NVIDIA
CUDA toolkit with minimum version 9.0 is required, and the latest version is strongly encouraged.
NVIDIA GPUs with at least NVIDIA compute capability 3.0 are required. You are strongly rec-
ommended to get the latest CUDA version and driver that supports your hardware, but beware of

2.2. Prerequisites 5

https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test
https://fedoraproject.org/wiki/EPEL
http://en.wikipedia.org/wiki/OpenMP
http://www.nvidia.com/object/cuda_home_new.html

GROMACS Documentation, Release 2020.7

possible performance regressions in newer CUDA versions on older hardware. While some CUDA
compilers (nvcc) might not officially support recent versions of gcc as the back-end compiler, we still
recommend that you at least use a gcc version recent enough to get the best SIMD support for your
CPU, since GROMACS always runs some code on the CPU. It is most reliable to use the same C++
compiler version for GROMACS code as used as the host compiler for nvcc.

To make it possible to use other accelerators, GROMACS also includes OpenCL support. The min-
imum OpenCL version required is 1.2 and only 64-bit implementations are supported. The current
OpenCL implementation is recommended for use with GCN-based AMD GPUs, and on Linux we rec-
ommend the ROCm runtime. Intel integrated GPUs are supported with the Neo drivers. OpenCL is
also supported with NVIDIA GPUs, but using the latest NVIDIA driver (which includes the NVIDIA
OpenCL runtime) is recommended. Also note that there are performance limitations (inherent to the
NVIDIA OpenCL runtime). It is not possible to configure both CUDA and OpenCL support in the
same build of GROMACS, nor to support both Intel and other vendors’ GPUs with OpenCL. A 64-bit
implementation of OpenCL is required and therefore OpenCL is only supported on 64-bit platforms.

MPI support

GROMACS can run in parallel on multiple cores of a single workstation using its built-in thread-MPI.
No user action is required in order to enable this.

If you wish to run in parallel on multiple machines across a network, you will need to have
* an MPI library installed that supports the MPI 1.3 standard, and
* wrapper compilers that will compile code using that library.

To compile with MPI set your compiler to the normal (non-MPI) compiler and add ~-DGMX_MP I=on
to the cmake options. It is possible to set the compiler to the MPI compiler wrapper but it is neither
necessary nor recommended.

The GROMACS team recommends OpenMPI version 1.6 (or higher), MPICH version 1.4.1 (or
higher), or your hardware vendor’s MPI installation. The most recent version of either of these is
likely to be the best. More specialized networks might depend on accelerations only available in the
vendor’s library. LAM-MPI might work, but since it has been deprecated for years, it is not supported.

For example, depending on your actual MPI library, use cmake —-DCMAKE_C_COMPILER=mpicc
—-DCMAKE_CXX_COMPILER=mpicxx —-DGMX_MPI=on.

2.2.4 CMake

GROMACS builds with the CMake build system, requiring at least version 3.9.6. You can check
whether CMake is installed, and what version it is, with cmake —--version. If you need to install
CMake, then first check whether your platform’s package management system provides a suitable
version, or visit the CMake installation page for pre-compiled binaries, source code and installation
instructions. The GROMACS team recommends you install the most recent version of CMake you
can.

2.2.5 Fast Fourier Transform library

Many simulations in GROMACS make extensive use of fast Fourier transforms, and a software library
to perform these is always required. We recommend FFTW (version 3 or higher only) or Intel MKL.
The choice of library can be set with cmake -DGMX_FFT_LIBRARY=<name>, where <name>
is one of fftw3, mkl, or fftpack. FFTPACK is bundled with GROMACS as a fallback, and
is acceptable if simulation performance is not a priority. When choosing MKL, GROMACS will
also use MKL for BLAS and LAPACK (see linear algebra libraries (page 14)). Generally, there is no
advantage in using MKL with GROMACS, and FFTW is often faster. With PME GPU offload support
using CUDA, a GPU-based FFT library is required. The CUDA-based GPU FFT library cuFFT is part

2.2. Prerequisites 6

https://www.khronos.org/opencl/
http://www.open-mpi.org
http://www.mpich.org
http://www.lam-mpi.org
http://www.cmake.org/install/
http://www.fftw.org
https://software.intel.com/en-us/intel-mkl

GROMACS Documentation, Release 2020.7

of the CUDA toolkit (required for all CUDA builds) and therefore no additional software component
is needed when building with CUDA GPU acceleration.

Using FFTW

FFTW is likely to be available for your platform via its package management system, but there can
be compatibility and significant performance issues associated with these packages. In particular,
GROMACS simulations are normally run in “mixed” floating-point precision, which is suited for
the use of single precision in FFTW. The default FFTW package is normally in double precision,
and good compiler options to use for FFTW when linked to GROMACS may not have been used.
Accordingly, the GROMACS team recommends either

* that you permit the GROMACS installation to download and build FFTW from source automat-
ically for you (use cmake —-DGMX_BUILD_OWN_FFTW=O0ON), or

* that you build FFTW from the source code.

If you build FFTW from source yourself, get the most recent version and follow the FFTW in-
stallation guide. Choose the precision for FFTW (i.e. single/float vs. double) to match whether
you will later use mixed or double precision for GROMACS. There is no need to compile FFTW
with threading or MPI support, but it does no harm. On x86 hardware, compile with both
—-—enable-sse2and -—enable-avx for FFTW-3.3.4 and earlier. From FFTW-3.3.5, you should
alsoadd ——enable-avx2 also. On Intel processors supporting 512-wide AVX, including KNL, add
——enable-avx512 also. FFTW will create a fat library with codelets for all different instruction
sets, and pick the fastest supported one at runtime. On ARM architectures with NEON SIMD sup-
port and IBM Power8 and later, you definitely want version 3.3.5 or later, and to compile it with
—-—enable-neon and ——enable-vsx, respectively, for SIMD support. If you are using a Cray,
there is a special modified (commercial) version of FFTs using the FFTW interface which can be
slightly faster.

Using MKL

Use MKL bundled with Intel compilers by setting up the compiler environment, e.g., through
source /path/to/compilervars.sh intel64 or similar before running CMake includ-
ing setting -DGMX_FFT_LIBRARY=mk]1.

If you need to customize this further, use

cmake -DGMX_FFT_LIBRARY=mkl \
-DMKL_LIBRARIES="/full/path/to/libone.so;/full/path/to/libtwo.so" \
—-DMKL_INCLUDE_DIR="/full/path/to/mkl/include"

The full list and order(!) of libraries you require are found in Intel’s MKL documentation for your
system.

Using ARM Performance Libraries

The ARM Performance Libraries provides FFT transforms implementation for ARM architec-
tures. Preliminary support is provided for ARMPL in GROMACS through its FFTW-compatible
API. Assuming that the ARM HPC toolchain environment including the ARMPL paths are set
up (e.g. through loading the appropriate modules like module load Module-Prefix/
arm-hpc-compiler-X.Y/armpl/X.Y) use the following cmake options:

cmake -DGMX_FFT_LIBRARY=fftw3 \
-DFFTWF_LIBRARY="S/ARMPL_DIR}/1ib/libarmpl_lp64.so" \
~-DFFTWF_INCLUDE_DIR=$/{ARMPL_DIR}/include

2.2. Prerequisites 7

http://www.fftw.org
http://www.fftw.org/doc/Installation-and-Customization.html#Installation-and-Customization
http://www.fftw.org/doc/Installation-and-Customization.html#Installation-and-Customization

GROMACS Documentation, Release 2020.7

2.2.6 Other optional build components

* Run-time detection of hardware capabilities can be improved by linking with hwloc, which is
automatically enabled if detected.

* Hardware-optimized BLAS and LAPACK libraries are useful for a few of the GROMACS utili-
ties focused on normal modes and matrix manipulation, but they do not provide any benefits for
normal simulations. Configuring these is discussed at linear algebra libraries (page 14).

* The built-in GROMACS trajectory viewer gmx view requires X11 and Motif/Lesstif libraries
and header files. You may prefer to use third-party software for visualization, such as VMD or
PyMol.

¢ An external TNG library for trajectory-file handling can be used by setting -DGMX_ -
EXTERNAL_TNG=yes, but TNG 1.7.10 is bundled in the GROMACS source already.

* The Imfit library for Levenberg-Marquardt curve fitting is used in GROMACS. Only Imfit 7.0
is supported. A reduced version of that library is bundled in the GROMACS distribution,
and the default build uses it. That default may be explicitly enabled with ~-DGMX_USE_ -
LMFIT=internal. To use an external Imfit library, set -DGMX_USE_LMFIT=external,
and adjust CMAKE_PREFIX_PATH as needed. Imfit support can be disabled with ~DGMX_ —
USE_LMFIT=none.

* zlib is used by TNG for compressing some kinds of trajectory data

¢ Building the GROMACS documentation is optional, and requires ImageMagick, pdflatex, bib-
tex, doxygen, python 3.5, sphinx 1.6.1, and pygments.

* The GROMACS utility programs often write data files in formats suitable for the Grace plotting
tool, but it is straightforward to use these files in other plotting programs, too.

e Set —-DGMX_PYTHON_PACKAGE=0N when configuring GROMACS with CMake to enable ad-
ditional CMake targets for the gmxapi Python package and sample_restraint package from the
main GROMACS CMake build. This supports additional testing and documentation generation.

2.3 Doing a build of GROMACS

This section will cover a general build of GROMACS with CMake (page 6), but it is not an exhaustive
discussion of how to use CMake. There are many resources available on the web, which we suggest
you search for when you encounter problems not covered here. The material below applies specifi-
cally to builds on Unix-like systems, including Linux, and Mac OS X. For other platforms, see the
specialist instructions below.

2.3.1 Configuring with CMake

CMake will run many tests on your system and do its best to work out how to build GROMACS for
you. If your build machine is the same as your target machine, then you can be sure that the defaults
and detection will be pretty good. However, if you want to control aspects of the build, or you are
compiling on a cluster head node for back-end nodes with a different architecture, there are a few
things you should consider specifying.

The best way to use CMake to configure GROMACS is to do an “out-of-source” build, by making
another directory from which you will run CMake. This can be outside the source directory, or a
subdirectory of it. It also means you can never corrupt your source code by trying to build it! So,
the only required argument on the CMake command line is the name of the directory containing the
CMakeLists.txt file of the code you want to build. For example, download the source tarball and
use

tar xfz gromacs-2020.7.tgz
cd gromacs-2020.7

2.3. Doing a build of GROMACS 8

http://www.ks.uiuc.edu/Research/vmd/
http://www.pymol.org

GROMACS Documentation, Release 2020.7

mkdir build-gromacs
cd build-gromacs
cmake

You will see cmake report a sequence of results of tests and detections done by the GROMACS build
system. These are written to the cmake cache, kept in CMakeCache.txt. You can edit this file
by hand, but this is not recommended because you could make a mistake. You should not attempt to
move or copy this file to do another build, because file paths are hard-coded within it. If you mess
things up, just delete this file and start again with cmake.

If there is a serious problem detected at this stage, then you will see a fatal error and some suggestions
for how to overcome it. If you are not sure how to deal with that, please start by searching on the web
(most computer problems already have known solutions!) and then consult the gmx-users mailing
list. There are also informational warnings that you might like to take on board or not. Piping the
output of cmake through less or tee can be useful, too.

Once cmake returns, you can see all the settings that were chosen and information about them by
using e.g. the curses interface

ccmake

You can actually use ccmake (available on most Unix platforms) directly in the first step, but then
most of the status messages will merely blink in the lower part of the terminal rather than be written
to standard output. Most platforms including Linux, Windows, and Mac OS X even have native
graphical user interfaces for cmake, and it can create project files for almost any build environment
you want (including Visual Studio or Xcode). Check out running CMake for general advice on what
you are seeing and how to navigate and change things. The settings you might normally want to
change are already presented. You may make changes, then re-configure (using c), so that it gets
a chance to make changes that depend on yours and perform more checking. It may take several
configuration passes to reach the desired configuration, in particular if you need to resolve errors.

When you have reached the desired configuration with ccmake, the build system can be generated
by pressing g. This requires that the previous configuration pass did not reveal any additional settings
(if it did, you need to configure once more with c). With cmake, the build system is generated after
each pass that does not produce errors.

You cannot attempt to change compilers after the initial run of cmake. If you need to change, clean
up, and start again.

Where to install GROMACS

GROMACS is installed in the directory to which CMAKE_INSTALL_PREFIX points. It may not
be the source directory or the build directory. You require write permissions to this directory. Thus,
without super-user privileges, CMAKE_INSTALL_PREFIX will have to be within your home direc-
tory. Even if you do have super-user privileges, you should use them only for the installation phase,
and never for configuring, building, or running GROMACS!

Using CMake command-line options

Once you become comfortable with setting and changing options, you may know in advance how
you will configure GROMACS. If so, you can speed things up by invoking cmake and passing the
various options at once on the command line. This can be done by setting cache variable at the
cmake invocation using ~-DOPTION=VALUE. Note that some environment variables are also taken
into account, in particular variables like CC and CXX.

For example, the following command line

cmake .. —-DGMX_GPU=ON -DGMX_MPI=ON —-DCMAKE_INSTALL_PREFIX=/home/marydoe/
—programs

2.3. Doing a build of GROMACS 9

http://www.cmake.org/runningcmake/

GROMACS Documentation, Release 2020.7

can be used to build with CUDA GPUs, MPI and install in a custom location. You can even save that
in a shell script to make it even easier next time. You can also do this kind of thing with ccmake, but
you should avoid this, because the options set with —D will not be able to be changed interactively in
that run of ccmake.

SIMD support

GROMACS has extensive support for detecting and using the SIMD capabilities of many modern
HPC CPU architectures. If you are building GROMACS on the same hardware you will run it on,
then you don’t need to read more about this, unless you are getting configuration warnings you do not
understand. By default, the GROMACS build system will detect the SIMD instruction set supported
by the CPU architecture (on which the configuring is done), and thus pick the best available SIMD
parallelization supported by GROMACS. The build system will also check that the compiler and
linker used also support the selected SIMD instruction set and issue a fatal error if they do not.

Valid values are listed below, and the applicable value with the largest number in the list is generally
the one you should choose. In most cases, choosing an inappropriate higher number will lead to
compiling a binary that will not run. However, on a number of processor architectures choosing the
highest supported value can lead to performance loss, e.g. on Intel Skylake-X/SP and AMD Zen.

1. None For use only on an architecture either lacking SIMD, or to which GROMACS has not yet
been ported and none of the options below are applicable.

2. SSE2 This SIMD instruction set was introduced in Intel processors in 2001, and AMD in 2003.
Essentially all x86 machines in existence have this, so it might be a good choice if you need to
support dinosaur x86 computers too.

3. SSE4.1 Present in all Intel core processors since 2007, but notably not in AMD Magny-Cours.
Still, almost all recent processors support this, so this can also be considered a good baseline if
you are content with slow simulations and prefer portability between reasonably modern pro-
CESSOors.

4. AVX_128_FMA AMD Bulldozer, Piledriver (and later Family 15h) processors have this.

5. AVX_ 256 Intel processors since Sandy Bridge (2011). While this code will work on the AMD
Bulldozer and Piledriver processors, it is significantly less efficient than the AVX_128_FMA
choice above - do not be fooled to assume that 256 is better than 128 in this case.

6. AVX2_128 AMD Zen/Zen2 and Hygon Dhyana microarchitecture processors; it will enable
AVX?2 with 3-way fused multiply-add instructions. While these microarchitectures do support
256-bit AVX2 instructions, hence AVX2_ 256 is also supported, 128-bit will generally be faster,
in particular when the non-bonded tasks run on the CPU — hence the default AVX2_128. With
GPU offload however AVX2_ 256 can be faster on Zen processors.

7. AVX2_256 Present on Intel Haswell (and later) processors (2013), and it will also enable Intel
3-way fused multiply-add instructions.

8. AVX_512 Skylake-X desktop and Skylake-SP Xeon processors (2017); it will generally be
fastest on the higher-end desktop and server processors with two 512-bit fused multiply-add
units (e.g. Core 19 and Xeon Gold). However, certain desktop and server models (e.g. Xeon
Bronze and Silver) come with only one AVX512 FMA unit and therefore on these processors
AVX2_ 256 is faster (compile- and runtime checks try to inform about such cases). Additionally,
with GPU accelerated runs AVX2_256 can also be faster on high-end Skylake CPUs with both
512-bit FMA units enabled.

9. AVX_512_KNL Knights Landing Xeon Phi processors
10. Sparc64_HPC_ACE Fujitsu machines like the K computer have this.
11. IBM_VMX Power6 and similar Altivec processors have this.
12. IBM_VSX Power7, Power8, Power9 and later have this.

13. ARM_NEON 32-bit ARMv7 with NEON support.

2.3. Doing a build of GROMACS 10

GROMACS Documentation, Release 2020.7

14. ARM_NEON_ASIMD 64-bit ARMvS8 and later.

The CMake configure system will check that the compiler you have chosen can target the architecture
you have chosen. mdrun will check further at runtime, so if in doubt, choose the lowest number you
think might work, and see what mdrun says. The configure system also works around many known
issues in many versions of common HPC compilers.

A further GMX_SIMD=Reference option exists, which is a special SIMD-like implementation
written in plain C that developers can use when developing support in GROMACS for new SIMD
architectures. It is not designed for use in production simulations, but if you are using an architecture
with SIMD support to which GROMACS has not yet been ported, you may wish to try this option
instead of the default GMX_ SIMD=None, as it can often out-perform this when the auto-vectorization
in your compiler does a good job. And post on the GROMACS mailing lists, because GROMACS
can probably be ported for new SIMD architectures in a few days.

CMake advanced options

The options that are displayed in the default view of ccmake are ones that we think a reasonable
number of users might want to consider changing. There are a lot more options available, which
you can see by toggling the advanced mode in ccmake on and off with t. Even there, most of the
variables that you might want to change have a CMAKE__ or GMX__ prefix. There are also some options
that will be visible or not according to whether their preconditions are satisfied.

Helping CMake find the right libraries, headers, or programs
If libraries are installed in non-default locations their location can be specified using the following
variables:

e CMAKE_INCLUDE_PATH for header files

e CMAKE_LIBRARY_PATH for libraries

e CMAKE_PREFIX_PATH for header, libraries and binaries (e.g. /usr/local).

The respective include, 1ib, or bin is appended to the path. For each of these variables, a list of
paths can be specified (on Unix, separated with “:”’). These can be set as enviroment variables like:

CMAKE_PREFIX _PATH=/opt/fftw:/opt/cuda cmake ..

(assuming bash shell). Alternatively, these variables are also cmake options, so they can be set like
-DCMAKE_PREFIX_PATH=/opt/fftw:/opt/cuda.

The CC and CXX environment variables are also useful for indicating to cmake which compilers to
use. Similarly, CFLAGS/CXXFLAGS can be used to pass compiler options, but note that these will
be appended to those set by GROMACS for your build platform and build type. You can customize
some of this with advanced CMake options such as CMAKE_C_FLAGS and its relatives.

See also the page on CMake environment variables.

CUDA GPU acceleration

If you have the CUDA Toolkit installed, you can use cmake with:

cmake .. —DGMX_GPU=ON -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda

(or whichever path has your installation). In some cases, you might need to specify manually which
of your C++ compilers should be used, e.g. with the advanced option CUDA_HOST_COMPILER.

By default, code will be generated for the most common CUDA architectures. However, to reduce
build time and binary size we do not generate code for every single possible architecture, which in
rare cases (say, Tegra systems) can result in the default build not being able to use some GPUs. If

2.3. Doing a build of GROMACS 11

http://cmake.org/Wiki/CMake_Useful_Variables#Environment_Variables
http://www.nvidia.com/object/cuda_home_new.html

GROMACS Documentation, Release 2020.7

this happens, or if you want to remove some architectures to reduce binary size and build time, you
can alter the target CUDA architectures. This can be done either with the GMX_CUDA_TARGET_SM
or GMX_CUDA_TARGET_COMPUTE CMake variables, which take a semicolon delimited string with
the two digit suffixes of CUDA (virtual) architectures names, for instance “35;50;51;52;53;60”. For
details, see the “Options for steering GPU code generation” section of the nvcc man / help or Chapter
6. of the nvcc manual.

The GPU acceleration has been tested on AMD64/x86-64 platforms with Linux, Mac OS X and
Windows operating systems, but Linux is the best-tested and supported of these. Linux running on
POWER 8, ARM v7 and v8 CPUs also works well.

Experimental support is available for compiling CUDA code, both for host and device, using clang
(version 6.0 or later). A CUDA toolkit is still required but it is used only for GPU device code gener-
ation and to link against the CUDA runtime library. The clang CUDA support simplifies compilation
and provides benefits for development (e.g. allows the use code sanitizers in CUDA host-code). Ad-
ditionally, using clang for both CPU and GPU compilation can be beneficial to avoid compatibility
issues between the GNU toolchain and the CUDA toolkit. clang for CUDA can be triggered using the
GMX_CLANG_CUDA=ON CMake option. Target architectures can be selected with GMX_CUDA_ -
TARGET_SM, virtual architecture code is always embedded for all requested architectures (hence
GMX_CUDA_TARGET_COMPUTE is ignored). Note that this is mainly a developer-oriented fea-
ture and it is not recommended for production use as the performance can be significantly lower than
that of code compiled with nvce (and it has also received less testing). However, note that since clang
5.0 the performance gap is only moderate (at the time of writing, about 20% slower GPU kernels), so
this version could be considered in non performance-critical use-cases.

OpenCL GPU acceleration

The primary targets of the GROMACS OpenCL support is accelerating simulations on AMD and
Intel hardware. For AMD, we target both discrete GPUs and APUs (integrated CPU+GPU chips),
and for Intel we target the integrated GPUs found on modern workstation and mobile hardware. The
GROMACS OpenCL on NVIDIA GPUs works, but performance and other limitations make it less
practical (for details see the user guide).

To build GROMACS with OpenCL support enabled, two components are required: the OpenCL head-
ers and the wrapper library that acts as a client driver loader (so-called ICD loader). The additional,
runtime-only dependency is the vendor-specific GPU driver for the device targeted. This also con-
tains the OpenCL compiler. As the GPU compute kernels are compiled on-demand at run time, this
vendor-specific compiler and driver is not needed for building GROMACS. The former, compile-time
dependencies are standard components, hence stock versions can be obtained from most Linux dis-
tribution repositories (e.g. opencl-headers and ocl-icd-libopencll on Debian/Ubuntu).
Only the compatibility with the required OpenCL version 1.2 needs to be ensured. Alternatively, the
headers and library can also be obtained from vendor SDKs (e.g. from AMD), which must be installed
in a path found in CMAKE_PREFIX_PATH (or via the environment variables AMDAPP SDKROOT or
CUDA_PATH).

To trigger an OpenCL build the following CMake flags must be set

cmake .. —-DGMX_GPU=ON -DGMX_USE_OPENCL=0N

To build with support for Intel integrated GPUs, it is required to add ~-DGMX_OPENCL_NB_-
CLUSTER_SIZE=4 to the cmake command line, so that the GPU kernels match the characteristics
of the hardware. The Neo driver is recommended.

On Mac OS, an AMD GPU can be used only with OS version 10.10.4 and higher; earlier OS versions
are known to run incorrectly.

By default, any cIFFT library on the system will be used with GROMACS, but if none is found then
the code will fall back on a version bundled with GROMACS. To require GROMACS to link with an
external library, use

2.3. Doing a build of GROMACS 12

https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
http://developer.amd.com/appsdk
https://www.khronos.org/opencl/
https://github.com/intel/compute-runtime/releases

GROMACS Documentation, Release 2020.7

cmake .. —DGMX_GPU=ON -DGMX_USE_OPENCL=0ON -DclFFT_ROOT_DIR=/path/to/your/
—CclFFT —-DGMX_EXTERNAL_CLFFT=TRUE

Static linking

Dynamic linking of the GROMACS executables will lead to a smaller disk footprint when installed,
and so is the default on platforms where we believe it has been tested repeatedly and found to work.
In general, this includes Linux, Windows, Mac OS X and BSD systems. Static binaries take more
space, but on some hardware and/or under some conditions they are necessary, most commonly when
you are running a parallel simulation using MPI libraries (e.g. Cray).

e To link GROMACS binaries statically against the internal GROMACS libraries, set
—-DBUILD_SHARED_LIBS=O0FF.

* To link statically against external (non-system) libraries as well, set ~-DGMX_PREFER_—
STATIC_LIBS=ON. Note, that in general cmake picks up whatever is available, so this
option only instructs cmake to prefer static libraries when both static and shared are avail-
able. If no static version of an external library is available, even when the aforementioned
option is ON, the shared library will be used. Also note that the resulting binaries will still
be dynamically linked against system libraries on platforms where that is the default. To use
static system libraries, additional compiler/linker flags are necessary, e.g. —~static—-1libgcc
—-static-libstdc++.

e To attempt to link a fully static binary set -DGMX_BUILD_SHARED_EXE=0FF. This will
prevent CMake from explicitly setting any dynamic linking flags. This option also sets
-DBUILD_SHARED_LIBS=OFF and ~-DGMX_PREFER_STATIC_LIBS=ON by default, but
the above caveats apply. For compilers which don’t default to static linking, the required flags
have to be specified. On Linux, this is usually CFLAGS=-static CXXFLAGS=-static.

gmxapi C++ API

For dynamic linking builds and on non-Windows platforms, an extra library and headers
are installed by setting —-DGMXAPI=ON (default). Build targets gmxapi-cppdocs and
gmxapi-cppdocs-dev produce documentation in docs/api-user and docs/api-dev, re-
spectively. For more project information and use cases, refer to the tracked Issue 2585, associated
GitHub gmxapi projects, or DOI 10.1093/bioinformatics/bty484.

gmxapi is not yet tested on Windows or with static linking, but these use cases are targeted for future
versions.

Portability aspects

A GROMACS build will normally not be portable, not even across hardware with the same base
instruction set, like x86. Non-portable hardware-specific optimizations are selected at configure-
time, such as the SIMD instruction set used in the compute kernels. This selection will be done by
the build system based on the capabilities of the build host machine or otherwise specified to cmake
during configuration.

Often it is possible to ensure portability by choosing the least common denominator of SIMD support,
e.g. SSE2 for x86, and ensuring the you use cmake -DGMX_USE_RDTSCP=off if any of the target
CPU architectures does not support the RDTSCP instruction. However, we discourage attempts to use
a single GROMACS installation when the execution environment is heterogeneous, such as a mix
of AVX and earlier hardware, because this will lead to programs (especially mdrun) that run slowly
on the new hardware. Building two full installations and locally managing how to call the correct
one (e.g. using a module system) is the recommended approach. Alternatively, as at the moment
the GROMACS tools do not make strong use of SIMD acceleration, it can be convenient to create
an installation with tools portable across different x86 machines, but with separate mdrun binaries

2.3. Doing a build of GROMACS 13

https://redmine.gromacs.org/issues/2585
https://github.com/kassonlab/gmxapi
https://doi.org/10.1093/bioinformatics/bty484

GROMACS Documentation, Release 2020.7

for each architecture. To achieve this, one can first build a full installation with the least-common-
denominator SIMD instruction set, e.g. —DGMX_SIMD=SSE2, then build separate mdrun binaries
for each architecture present in the heterogeneous environment. By using custom binary and library
suffixes for the mdrun-only builds, these can be installed to the same location as the “generic” tools
installation. Building just the mdrun binary (page 15) is possible by setting the -DGMX_BUILD_—
MDRUN_ONLY=0ON option.

Linear algebra libraries

As mentioned above, sometimes vendor BLAS and LAPACK libraries can provide performance en-
hancements for GROMACS when doing normal-mode analysis or covariance analysis. For simplic-
ity, the text below will refer only to BLAS, but the same options are available for LAPACK. By
default, CMake will search for BLAS, use it if it is found, and otherwise fall back on a version of
BLAS internal to GROMACS. The cmake option ~-DGMX_EXTERNAL_BLAS=on will be set ac-
cordingly. The internal versions are fine for normal use. If you need to specify a non-standard path
to search, use ~-DCMAKE_PREFIX_PATH=/path/to/search. If you need to specify a library
with a non-standard name (e.g. ESSL on Power machines or ARMPL on ARM machines), then set
-DGMX_BLAS_USER=/path/to/reach/lib/libwhatever.a.

If you are using Inte]l MKL for FFT, then the BLAS and LAPACK it provides are used automatically.
This could be over-ridden with GMX_BLAS_USER, etc.

On Apple platforms where the Accelerate Framework is available, these will be automatically used
for BLAS and LAPACK. This could be over-ridden with GMX_BLAS_USER, etc.

Building with MiMiC QM/MM support

MiMiC QM/MM interface integration will require linking against MiMiC communication library,
that establishes the communication channel between GROMACS and CPMD. The MiMiC Commu-
nication library can be downloaded here. Compile and install it. Check that the installation folder
of the MiMiC library is added to CMAKE_PREFIX_PATH if it is installed in non-standard location.
Building QM/MM-capable version requires double-precision version of GROMACS compiled with
MPI support:

¢ -DGMX_DOUBLE=ON -DGMX_MPI -DGMX_MIMIC=ON

Changing the names of GROMACS binaries and libraries

It is sometimes convenient to have different versions of the same GROMACS programs installed.
The most common use cases have been single and double precision, and with and without MPI. This
mechanism can also be used to install side-by-side multiple versions of mdrun optimized for different
CPU architectures, as mentioned previously.

By default, GROMACS will suffix programs and libraries for such builds with _d for double preci-
sion and/or _mpi for MPI (and nothing otherwise). This can be controlled manually with GMX_ -
DEFAULT_SUFFIX (ON/OFF), GMX_BINARY_SUFFIX (takes a string) and GMX_LIBS_-
SUFFIX (also takes a string). For instance, to set a custom suffix for programs and libraries, one
might specify:

cmake .. -DGMX_DEFAULT_SUFFIX=OFF -DGMX_BINARY_ SUFFIX=_mod -DGMX_LIBS_
< SUFFIX=_mod

Thus the names of all programs and libraries will be appended with _mod.

Changing installation tree structure

By default, a few different directories under CMAKE_INSTALL_PREF IX are used when when GRO-
MACS is installed. Some of these can be changed, which is mainly useful for packaging GROMACS

2.3. Doing a build of GROMACS 14

https://software.intel.com/en-us/intel-mkl
https://gitlab.com/MiMiC-projects/CommLib

GROMACS Documentation, Release 2020.7

for various distributions. The directories are listed below, with additional notes about some of them.
Unless otherwise noted, the directories can be renamed by editing the installation paths in the main
CMakelLists.txt.

bin/ The standard location for executables and some scripts. Some of the scripts hardcode the
absolute installation prefix, which needs to be changed if the scripts are relocated. The name of
the directory can be changed using CMAKE_INSTALL_BINDIR CMake variable.

include/gromacs/ The standard location for installed headers.

1lib/ The standard location for libraries. The default depends on the system, and is determined by
CMake. The name of the directory can be changed using CMAKE_ INSTALL_LIBDIR CMake
variable.

lib/pkgconfig/ Information about the installed 1ibgromacs library for pkg—config is in-
stalled here. The 1ib/ part adapts to the installation location of the libraries. The installed files
contain the installation prefix as absolute paths.

share/cmake/ CMake package configuration files are installed here.

share/gromacs/ Various data files and some documentation go here. The first part can be
changed using CMAKE_INSTALL_DATADIR, and the second by using GMX_INSTALL_-
DATASUBDIR Using these CMake variables is the preferred way of changing the installation
path for share/gromacs/top/, since the path to this directory is built into 1ibgromacs
as well as some scripts, both as a relative and as an absolute path (the latter as a fallback if
everything else fails).

share/man/ Installed man pages go here.

2.3.2 Compiling and linking

Once you have configured with cmake, you can build GROMACS with make. It is expected that this
will always complete successfully, and give few or no warnings. The CMake-time tests GROMACS
makes on the settings you choose are pretty extensive, but there are probably a few cases we have not
thought of yet. Search the web first for solutions to problems, but if you need help, ask on gmx-users,
being sure to provide as much information as possible about what you did, the system you are building
on, and what went wrong. This may mean scrolling back a long way through the output of make to
find the first error message!

If you have a multi-core or multi-CPU machine with N processors, then using

make -3 N

will generally speed things up by quite a bit. Other build generator systems supported by cmake (e.g.
ninja) also work well.

Building only mdrun

This is now supported with the cmake option ~-DGMX_BUILD_MDRUN_ONLY=0N, which will build
a different version of 1ibgromacs and the mdrun program. Naturally, now make install in-
stalls only those products. By default, mdrun-only builds will default to static linking against GRO-
MACS libraries, because this is generally a good idea for the targets for which an mdrun-only build
is desirable.

2.3.3 Installing GROMACS

Finally, make install will instal GROMACS in the directory given in CMAKE_INSTALL_-
PREFIX. If this is a system directory, then you will need permission to write there, and you should
use super-user privileges only for make install and not the whole procedure.

2.3. Doing a build of GROMACS

15

GROMACS Documentation, Release 2020.7

2.3.4 Getting access to GROMACS after installation

GROMACS installs the script GMXRC in the bin subdirectory of the installation directory (e.g. /
usr/local/gromacs/bin/GMXRC), which you should source from your shell:

source /your/installation/prefix/here/bin/GMXRC

It will detect what kind of shell you are running and set up your environment for using GROMACS.
You may wish to arrange for your login scripts to do this automatically; please search the web for
instructions on how to do this for your shell.

Many of the GROMACS programs rely on data installed in the share /gromacs subdirectory of the
installation directory. By default, the programs will use the environment variables set in the GMXRC
script, and if this is not available they will try to guess the path based on their own location. This
usually works well unless you change the names of directories inside the install tree. If you still need
to do that, you might want to recompile with the new install location properly set, or edit the GMXRC
script.

GROMACS also installs a CMake toolchains file to help with building client soft-
ware. For an installation at /your/installation/prefix/here, toolchain files will
be installed at /your/installation/prefix/here/share/cmake/gromacs$ {GMX_-
LIBS_SUFFIX}/gromacs—-toolchain${GMX_LIBS_SUFFIX}.cmake where ${GMX_-
LIBS_SUFFIX} is as documented above (page 14).

2.3.5 Testing GROMACS for correctness

Since 2011, the GROMACS development uses an automated system where every new code change
is subject to regression testing on a number of platforms and software combinations. While this
improves reliability quite a lot, not everything is tested, and since we increasingly rely on cutting
edge compiler features there is non-negligible risk that the default compiler on your system could
have bugs. We have tried our best to test and refuse to use known bad versions in cmake, but we
strongly recommend that you run through the tests yourself. It only takes a few minutes, after which
you can trust your build.

The simplest way to run the checks is to build GROMACS with —-DREGRESSIONTEST_DOWNLOAD,
and run make check. GROMACS will automatically download and run the tests for you. Al-
ternatively, you can download and unpack the GROMACS regression test suite https://ftp.gromacs.
org/regressiontests/regressiontests-2020.7.tar.gz tarball yourself and use the advanced cmake option
REGRESSIONTEST_PATH to specify the path to the unpacked tarball, which will then be used for
testing. If the above does not work, then please read on.

The regression tests are also available from the download section. Once you have downloaded them,
unpack the tarball, source GMXRC as described above, and run ./gmxtest.pl all inside the
regression tests folder. You can find more options (e.g. adding double when using double precision,
or —only expanded to run just the tests whose names match “expanded”) if you just execute the
script without options.

Hopefully, you will get a report that all tests have passed. If there are individual failed tests it could
be a sign of a compiler bug, or that a tolerance is just a tiny bit too tight. Check the output files the
script directs you too, and try a different or newer compiler if the errors appear to be real. If you
cannot get it to pass the regression tests, you might try dropping a line to the gmx-users mailing list,
but then you should include a detailed description of your hardware, and the output of gmx mdrun
—-version (which contains valuable diagnostic information in the header).

A build with -DGMX_BUILD_MDRUN_ONLY cannot be tested with make check from the build
tree, because most of the tests require a full build to run things like grompp. To test such an mdrun
fully requires installing it to the same location as a normal build of GROMACS, downloading the
regression tests tarball manually as described above, sourcing the correct GMXRC and running the perl
script manually. For example, from your GROMACS source directory:

2.3. Doing a build of GROMACS 16

https://ftp.gromacs.org/regressiontests/regressiontests-2020.7.tar.gz
https://ftp.gromacs.org/regressiontests/regressiontests-2020.7.tar.gz
../download.html

GROMACS Documentation, Release 2020.7

mkdir build-normal
cd build-normal

cmake .. —-DCMAKE_INSTALL_PREFIX=/your/installation/prefix/here
make -7 4

make install

cd .

mkdir build-mdrun-only
cd build-mdrun-only

cmake .. —-DGMX_MPI=ON -DGMX_GPU=ON -DGMX_BUILD_MDRUN_ONLY=ON -DCMAKE__
—INSTALL_PREFIX=/your/installation/prefix/here
make -3 4

make install

cd /to/your/unpacked/regressiontests

source /your/installation/prefix/here/bin/GMXRC
./gmxtest.pl all -np 2

If your mdrun program has been suffixed in a non-standard way, then the . /gmxtest.pl -mdrun
option will let you specify that name to the test machinery. You canuse . /gmxtest.pl —-double
to test the double-precision version. You can use ./gmxtest.pl —crosscompiling to stop
the test harness attempting to check that the programs can be run. You can use ./gmxtest.pl
-mpirun srun if your command to run an MPI program is called srun.

The make check target also runs integration-style tests that may run with MPI if GMX_-
MPI=ON was set. To make these work with various possible MPI libraries, you may need
to set the CMake variables MPIEXEC, MPTEXEC_NUMPROC_FLAG, MPIEXEC_PREFLAGS and
MPIEXEC_POSTFLAGS so thatmdrun-mpi-test_mpi would run on multiple ranks via the shell
command

MPIEXEC MPIEXEC_NUMPROC_FLAG NUMPROC MPIEXEC_PREFLAGS \
mdrun-mpi-test_mpi MPIEXEC_POSTFLAGS) -otherflags

A typical example for SLURM is

cmake .. -DGMX _MPI=on -DMPIEXEC=srun —-DMPIEXEC_NUMPROC_FLAG=-n -DMPIEXEC_
—PREFLAGS= -DMPIEXEC_POSTFLAGS=

2.3.6 Testing GROMACS for performance

We are still working on a set of benchmark systems for testing the performance of GROMACS. Until
that is ready, we recommend that you try a few different parallelization options, and experiment with
tools such as gmx tune_pme.

2.3.7 Validating GROMACS for source code modifications

When building GROMACS from a release tarball, the build process automatically checks if any file
contributing to the build process have been modified since they have been packed in the archive.
This results in the marking of the version as either MODIFIED (if the source files have been modi-
fied) or UNCHECKED (if no validation was possible, e.g. if no Python installation was found). The
actual checking is performed by comparing a checksum stored in the release tarball against one gen-
erated by the createFileHash.py Python script during the build configuration. When running a
GROMACS binary, the checksum is also printed in the log file, together with a message if there is a
mismatch or no validation has been possible.

This allows users to check whether the binary they are using was built from source code that is
identical to the source code released by the GROMACS team. Thus unintentional modifications
to the source code for building binaries that are used for running production simulations are easily
detectable. Additionally, by manually setting a version tag using the GMX_VERSION_STRING_-

2.3. Doing a build of GROMACS 17

GROMACS Documentation, Release 2020.7

OF_FORK cmake option, users can mark a modified GROMACS release code with their custom
version string suffix.

2.3.8 Having difficulty?

You are not alone - this can be a complex task! If you encounter a problem with installing GROMACS,
then there are a number of locations where you can find assistance. It is recommended that you follow
these steps to find the solution:

1. Read the installation instructions again, taking note that you have followed each and every step
correctly.

2. Search the GROMACS webpage and users emailing list for information on the er-
ror. Adding site:https://mailman-1.sys.kth.se/pipermail/gromacs.
org_gmx—-users to a Google search may help filter better results.

3. Search the internet using a search engine such as Google.

4. Post to the GROMACS users emailing list gmx-users for assistance. Be sure to give a full
description of what you have done and why you think it did not work. Give details about
the system on which you are installing. Copy and paste your command line and as much of
the output as you think might be relevant - certainly from the first indication of a problem.
In particular, please try to include at least the header from the mdrun logfile, and preferably
the entire file. People who might volunteer to help you do not have time to ask you interactive
detailed follow-up questions, so you will get an answer faster if you provide as much information
as you think could possibly help. High quality bug reports tend to receive rapid high quality
answers.

2.4 Special instructions for some platforms

2.4.1 Building on Windows

Building on Windows using native compilers is rather similar to building on Unix, so please start by
reading the above. Then, download and unpack the GROMACS source archive. Make a folder in
which to do the out-of-source build of GROMACS. For example, make it within the folder unpacked
from the source archive, and call it build-gromacs.

For CMake, you can either use the graphical user interface provided on Windows, or you can use a
command line shell with instructions similar to the UNIX ones above. If you open a shell from within
your IDE (e.g. Microsoft Visual Studio), it will configure the environment for you, but you might
need to tweak this in order to get either a 32-bit or 64-bit build environment. The latter provides the
fastest executable. If you use a normal Windows command shell, then you will need to either set up
the environment to find your compilers and libraries yourself, or run the vcvarsall.bat batch
script provided by MSVC (just like sourcing a bash script under Unix).

With the graphical user interface, you will be asked about what compilers to use at the initial config-
uration stage, and if you use the command line they can be set in a similar way as under UNIX.

Unfortunately ~-DGMX_BUILD_OWN_FFTW=O0N (see Using FFTW (page 7)) does not work on Win-
dows, because there is no supported way to build FFTW on Windows. You can either build FFTW
some other way (e.g. MinGW), or use the built-in fftpack (which may be slow), or using MKL
(page 7).

For the build, you can either load the generated solutions file into e.g. Visual Studio, or use the
command line with cmake —-build so the right tools get used.

2.4. Special instructions for some platforms

18

http://www.gromacs.org

GROMACS Documentation, Release 2020.7

2.4.2 Building on Cray

GROMACS builds mostly out of the box on modern Cray machines, but you may need to specify the
use of static binaries with ~-DGMX_BUILD_SHARED_EXE=off, and you may need to set the F77
environmental variable to £tn when compiling FFTW. The ARM ThunderX2 Cray XC50 machines
differ only in that the recommended compiler is the ARM HPC Compiler (armclang).

2.4.3 Building on Solaris

The built-in GROMACS processor detection does not work on Solaris, so it is strongly recommended
that you build GROMACS with ~-DGMX_HWLOC=on and ensure that the CMAKE_PREFIX_PATH
includes the path where the hwloc headers and libraries can be found. At least version 1.11.8 of hwloc
is recommended.

Oracle Developer Studio is not a currently supported compiler (and does not currently compile GRO-
MACS correctly, perhaps because the thread-MPI atomics are incorrectly implemented in GRO-
MACS).

2.4.4 Fujitsu PRIMEHPC

This is the architecture of the K computer, which uses Fujitsu Sparc64 VIIIfx chips. On this platform,
GROMACS has accelerated group kernels using the HPC-ACE instructions, no accelerated Verlet
kernels, and a custom build toolchain. Since this particular chip only does double precision SIMD,
the default setup is to build GROMACS in double. Since most users only need single, we have added
an option GMX_RELAXED_DOUBLE_PRECISION to accept single precision square root accuracy
in the group kernels; unless you know that you really need 15 digits of accuracy in each individual
force, we strongly recommend you use this. Note that all summation and other operations are still
done in double.

The recommended configuration is to use

cmake .. —-DCMAKE_TOOLCHAIN_FILE=Toolchain-Fujitsu-Sparc64-mpi.cmake \
-DCMAKE_PREFIX_PATH=/your/fftw/installation/prefix \
-DCMAKE_INSTALL_PREFIX=/where/gromacs/should/be/installed \
-DGMX_MPI=ON \
-DGMX_BUILD_MDRUN_ONLY=ON \
—DGMX_RELAXED_DOUBLE_PRECISION=0ON

make

make install

2.4.5 Intel Xeon Phi

Xeon Phi processors, hosted or self-hosted, are supported. Only symmetric (aka native) mode is
supported on Knights Corner. The performance depends among other factors on the system size, and
for now the performance might not be faster than CPUs. When building for it, the recommended
configuration is

cmake .. -DCMAKE_TOOLCHAIN_FILE=Platform/XeonPhi
make
make install

The Knights Landing-based Xeon Phi processors behave like standard x86 nodes, but support a spe-
cial SIMD instruction set. When cross-compiling for such nodes, use the AVX_512_KNL SIMD
flavor. Knights Landing processors support so-called “clustering modes” which allow reconfiguring
the memory subsystem for lower latency. GROMACS can benefit from the quadrant or SNC clus-
tering modes. Care needs to be taken to correctly pin threads. In particular, threads of an MPI rank
should not cross cluster and NUMA boundaries. In addition to the main DRAM memory, Knights

2.4. Special instructions for some platforms

19

GROMACS Documentation, Release 2020.7

Landing has a high-bandwidth stacked memory called MCDRAM. Using it offers performance ben-
efits if it is ensured that mdrun runs entirely from this memory; to do so it is recommended that
MCDRAM is configured in “Flat mode” and mdrun is bound to the appropriate NUMA node (use
e.g. numactl —-membind 1 with quadrant clustering mode).

2.5 Tested platforms

While it is our best belief that GROMACS will build and run pretty much everywhere, it is important
that we tell you where we really know it works because we have tested it. Every commit in our git
source code repository is currently tested with a range of configuration options on x86 with gcc ver-
sions 6 and 7, clang versions 3.6 and 8, and For this testing, we use Ubuntu 16.04 or 18.04 operating
system. Other compiler, library, and OS versions are tested less frequently. For details, you can have
a look at the continuous integration server used by GROMACS, which uses GitLab runner on a local
k8s x86 cluster with NVIDIA and AMD GPU support.

We test irregularly on ARM v7, ARM v8, Cray, Fujitsu PRIMEHPC, Power8, Power9, Google Native
Client and other environments, and with other compilers and compiler versions, too.

2.5. Tested platforms 20

http://jenkins.gromacs.org

CHAPTER
THREE

USER GUIDE

This guide provides
* material introducing GROMACS
* practical advice for making effective use of GROMACS.

For getting, building and installing GROMACS, see the Installation guide (page 3). For background
on algorithms and implementations, see the reference manual part (page 293) of the documentation.

Please reference this documentation as https://doi.org/10.5281/zenodo.5938884.

To cite the source code for this release, please cite https://doi.org/10.5281/zenodo.5938877.

3.1 Getting started

3.1.1 Flow Chart

This is a flow chart of a typical GROMACS MD run of a protein in a box of water. A more detailed
example is available in Getting started (page 21). Several steps of energy minimization may be
necessary, these consist of cycles: gmx grompp (page 94) -> gmx mdrun (page 112).

21

https://doi.org/10.5281/zenodo.5938884
https://doi.org/10.5281/zenodo.5938877

GROMACS Documentation, Release 2020.7

eiwit.pdb

Generate a GROMACS topology
gmx pdb2gmx

conf.gro

Enlarge the box

gmx editconf topol.top

conf.gro

\
Solvate protein
gmx solvate

é)nf.grglopol.top

Generate mdrun input file
gmx grompp

grompp.mdp

opol.tpr

Run the simulation (EM or MD) Continuation
gmx mdrun < state.cpt

traj.xtc / traj.trr\ener.edr

Agnr;allgsis Analysis
gmx v1ew gmx energy

In this chapter we assume the reader is familiar with Molecular Dynamics and familiar with Unix,
including the use of a text editor such as jot, emacs or vi. We furthermore assume the GROMACS
software is installed properly on your system. When you see a line like

3.1. Getting started 22

GROMACS Documentation, Release 2020.7

1ls -1

you are supposed to type the contents of that line on your computer terminal.

3.1.2 Setting up your environment

In order to check whether you have access to GROMACS, please start by entering the command:

’gmx -version

This command should print out information about the version of GROMACS installed. If this, in
contrast, returns the phrase

’gmx: command not found. ‘

then you have to find where your version of GROMACS is installed. In the default case, the binaries
are located in /usr/local/gromacs/bin, however, you can ask your local system administrator
for more information, and then follow the advice for Getting access to GROMACS after installation

(page 16).

3.1.3 Flowchart of typical simulation

A typical simulation workflow with GROMACS is illustrated here (page 21).

3.1.4 Important files

Here is an overview of the most important GROMACS file types that you will encounter.

Molecular Topology file (. top)

The molecular topology file is generated by the program gmx pdb2gmx (page 128). gmx pdb2gmx
(page 128) translates a pdb (page 428) structure file of any peptide or protein to a molecular topology
file. This topology file contains a complete description of all the interactions in your peptide or
protein.

Topology #include file mechanism

When constructing a system topology in a top (page 430) file for presentation to grompp, GROMACS
uses a built-in version of the so-called C preprocessor, cpp (in GROMACS 3, it really was cpp). cpp
interprets lines like:

#include "ions.itp"

by looking for the indicated file in the current directory, the GROMACS share/top directory as indi-
cated by the GMXLIB environment variable, and any directory indicated by a —I flag in the value of
the include run parameter (page 203) in the mdp (page 426) file. It either finds this file or reports
a warning. (Note that when you supply a directory name, you should use Unix-style forward slashes
‘/’, not Windows-style backslashes * for separators.) When found, it then uses the contents exactly as
if you had cut and pasted the included file into the main file yourself. Note that you shouldn’t go and
do this copy-and-paste yourself, since the main purposes of the include file mechanism are to re-use
previous work, make future changes easier, and prevent typos.

Further, cpp interprets code such as:

. Getting started 23

GROMACS Documentation, Release 2020.7

#ifdef POSRES_WATER

; Position restraint for each water oxygen

[position_restraints]

;1 funct fex fcy fcz
1 1 1000 1000 1000

#endif

by testing whether the preprocessor variable POSRES_WATER was defined somewhere (i.e. “if de-
fined”). This could be done with #define POSRES_WATER earlier in the rop (page 430) file (or its
#include files), with a —-D flag in the include run parameter as above, or on the command line to
cpp. The function of the —D flag is borrowed from the similar usage in cpp. The string that follows
-D must match exactly; using ~-DPOSRES will not trigger #1fdef POSREor#ifdef DPOSRES.
This mechanism allows you to change your mdp (page 426) file to choose whether or not you want po-
sition restraints on your solvent, rather than your 7op (page 430) file. Note that preprocessor variables
are not the same as shell environment variables.

Molecular Structure file (. gro, .pdb)

When gmx pdb2gmx (page 128) is executed to generate a molecular topology, it also translates the
structure file (pdb (page 428) file) to a GROMOS structure file (gro (page 424) file). The main
difference between a pdb (page 428) file and a gromos file is their format and that a gro (page 424)
file can also hold velocities. However, if you do not need the velocities, you can also use a pdb
(page 428) file in all programs. To generate a box of solvent molecules around the peptide, the
program gmx solvate (page 153) is used. First the program gmx editconf (page 79) should be used
to define a box of appropriate size around the molecule. gmx solvate (page 153) solvates a solute
molecule (the peptide) into any solvent (in this case, water). The output of gmx solvate (page 153)
is a gromos structure file of the peptide solvated in water. gmx solvate (page 153) also changes the
molecular topology file (generated by gmx pdb2gmx (page 128)) to add solvent to the topology.

Molecular Dynamics parameter file (.mdp)

The Molecular Dynamics Parameter (mdp (page 426)) file contains all information about the Molecu-
lar Dynamics simulation itself e.g. time-step, number of steps, temperature, pressure etc. The easiest
way of handling such a file is by adapting a sample mdp (page 426) file. A sample mdp file (page 426)
is available.

Index file (.ndx)

Sometimes you may need an index file to specify actions on groups of atoms (e.g. temperature
coupling, accelerations, freezing). Usually the default index groups will be sufficient, so for this
demo we will not consider the use of index files.

Run input file (. tpr)

The next step is to combine the molecular structure (gro (page 424) file), topology (fop (page 430) file)
MD-parameters (mdp (page 426) file) and (optionally) the index file (ndx (page 427)) to generate a
run input file (zpr (page 432) extension). This file contains all information needed to start a simulation
with GROMACS. The gmx grompp (page 94) program processes all input files and generates the run
input 7pr (page 432) file.

Trajectory file (.trr, .tng, or .xtc)

Once the run input file is available, we can start the simulation. The program which starts the simula-
tion is called gmx mdrun (page 112) (or sometimes just mdrun, or mdrun_mpi). The only input file of
gmx mdrun (page 112) that you usually need in order to start a run is the run input file (1pr (page 432)

3.1. Getting started

24

GROMACS Documentation, Release 2020.7

file). The typical output files of gmx mdrun (page 112) are the trajectory file (177 (page 432) file), a
logfile (log (page 425) file), and perhaps a checkpoint file (cpt (page 422) file).

3.1.5 Tutorial material

There are several third-party tutorials available that cover aspects of using GROMACS. Further infor-
mation can also be found in the How o (page 283) section.

3.1.6 Background reading

e Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J. (1981) Intermolecular
Forces, chapter Interaction models for water in relation to protein hydration, pp 331-342. Dor-
drecht: D. Reidel Publishing Company Dordrecht

» Kabsch, W., Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition
of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637.

e Mierke, D.F,, Kessler, H. (1991). Molecular dynamics with dimethyl sulfoxide as a solvent.
Conformation of a cyclic hexapeptide. J. Am. Chem. Soc. 113, 9446.

 Stryer, L. (1988). Biochemistry vol. 1, p. 211. New York: Freeman, 3 edition.

3.2 System preparation

There are many ways to prepare a simulation system to run with GROMACS. These often vary with
the kind of scientific question being considered, or the model physics involved. A protein-ligand
atomistic free-energy simulation might need a multi-state topology, while a coarse-grained simulation
might need to manage defaults that suit systems with higher density.

3.2.1 Steps to consider

The following general guidance should help with planning successful simulations. Some stages are
optional for some kinds of simulations.

1. Clearly identify the property or phenomena of interest to be studied by performing the simula-
tion. Do not continue further until you are clear on this! Do not run your simulation and then
seek to work out how to use it to test your hypothesis, because it may be unsuitable, or the
required information was not saved.

2. Select the appropriate tools to be able to perform the simulation and observe the property or
phenomena of interest. It is important to read and familiarize yourself with publications by
other researchers on similar systems. Choices of tools include:

* software with which to perform the simulation (consideration of force field may influence
this decision)

* the force field, which describes how the particles within the system interact with each other.
Select one that is appropriate for the system being studied and the property or phenomena of
interest. This is a very important and non-trivial step! Consider now how you will analyze
your simulation data to make your observations.

3. Obtain or generate the initial coordinate file for each molecule to be placed within the system.
Many different software packages are able to build molecular structures and assemble them into
suitable configurations.

4. Generate the raw starting structure for the system by placing the molecules within the coordi-
nate file as appropriate. Molecules may be specifically placed or arranged randomly. Several

3.2. System preparation

25

http://www.mdtutorials.com/gmx/

GROMACS Documentation, Release 2020.7

non-GROMACS tools are useful here; within GROMACS gmx solvate (page 153), gmx insert-
molecules (page 105) and gmx genconf (page 91) solve frequent problems.

5. Obtain or generate the topology file for the system, using (for example) gmx pdb2gmx
(page 128), gmx x2top (page 179), SwissParam (for CHARMM forcefield), PRODRG (for
GROMOS96 43A1), Automated Topology Builder (for GROMOS96 53A6), MKTOP (for
OPLS/AA) or your favourite text editor in concert with chapter 5 of the GROMACS Reference
Manual. For the AMBER force fields, antechamber or acpype might be appropriate.

6. Describe a simulation box (e.g. using gmx editconf (page 79)) whose size is appropriate for the
eventual density you would like, fill it with solvent (e.g. using gmx solvate (page 153)), and
add any counter-ions needed to neutralize the system (e.g. using gmx grompp (page 94) and
gmx insert-molecules (page 105)). In these steps you may need to edit your topology file to stay
current with your coordinate file.

7. Run an energy minimization on the system (using gmx grompp (page 94) and gmx mdrun
(page 112)). This is required to sort out any bad starting structures caused during generation
of the system, which may cause the production simulation to crash. It may be necessary also
to minimize your solute structure in vacuo before introducing solvent molecules (or your lipid
bilayer or whatever else). You should consider using flexible water models and not using bond
constraints or frozen groups. The use of position restraints and/or distance restraints should be
evaluated carefully.

8. Select the appropriate simulation parameters for the equilibration simulation (defined in mdp
(page 426) file). You need to choose simulation parameters that are consistent with how force
field was derived. You may need to simulate at NVT with position restraints on your solvent
and/or solute to get the temperature almost right, then relax to NPT to fix the density (which
should be done with Berendsen until after the density is stabilized, before a further switch to
a barostat that produces the correct ensemble), then move further (if needed) to reach your
production simulation ensemble (e.g. NVT, NVE). If you have problems here with the system
blowing up (page 272), consider using the suggestions on that page, e.g. position restraints on
solutes, or not using bond constraints, or using smaller integration timesteps, or several gentler
heating stage(s).

9. Run the equilibration simulation for sufficient time so that the system relaxes sufficiently in the
target ensemble to allow the production run to be commenced (using gmx grompp (page 94) and
gmx mdrun (page 112), then gmx energy (page 83) and trajectory visualization tools).

10. Select the appropriate simulation parameters for the production simulation (defined in mdp
(page 426) file). In particular, be careful not to re-generate the velocities. You still need to
be consistent with how the force field was derived and how to measure the property or phenom-
ena of interest.

3.2.2 Tips and tricks
Database files

The share/top directory of a GROMACS installation contains numerous plain-text helper files
with the .dat file extension. Some of the command-line tools (see Command-line reference
(page 34)) refer to these, and each tool documents which files it uses, and how they are used.

If you need to modify these files (e.g. to introduce new atom types with VDW radii into vdwradii.
dat), you can copy the file from your installation directory into your working directory, and the
GROMACS tools will automatically load the copy from your working directory rather than the stan-
dard one. To suppress all the standard definitions, use an empty file in the working directory.

3.2. System preparation 26

http://swissparam.ch/
http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
http://compbio.biosci.uq.edu.au/atb/
http://www.aribeiro.net.br/mktop
http://amber.scripps.edu/antechamber/antechamber.html
https://github.com/alanwilter/acpype
http://www.gromacs.org/Documentation/How-tos/Trajectory_Visualization

GROMACS Documentation, Release 2020.7

3.3 Managing long simulations

Molecular simulations often extend beyond the lifetime of a single UNIX command-line process. It is
useful to be able to stop and restart the simulation in a way that is equivalent to a single run. When grm.x
mdrun (page 112) is halted, it writes a checkpoint file that can restart the simulation exactly as if there
was no interruption. To do this, the checkpoint retains a full-precision version of the positions and
velocities, along with state information necessary to restart algorithms e.g. that implement coupling to
external thermal reservoirs. A restart can be attempted using e.g. a gro (page 424) file with velocities,
but since the gro (page 424) file has significantly less precision, and none of the coupling algorithms
will have their state carried over, such a restart is less continuous than a normal MD step.

Such a checkpoint file is also written periodically by gmx mdrun (page 112) during the run. The
interval is given by the —cpt flag to gmx mdrun (page 112). When gmx mdrun (page 112) attemps to
write each successive checkpoint file, it first renames the old file with the suffix _prewv, so that even
if something goes wrong while writing the new checkpoint file, only recent progress can be lost.

gmx mdrun (page 112) can be halted in several ways:
¢ the number of simulation nsteps (page 205) can expire
* the user issues a termination signal (e.g. with Ctrl-C on the terminal)
* the job scheduler issues a termination signal when time expires

e when gmx mdrun (page 112) detects that the length specified with —maxh has elapsed (this
option is useful to help cooperate with a job scheduler, but can be problematic if jobs can be
suspended)

» some kind of catastrophic failure, such as loss of power, or a disk filling up, or a network failing

To use the checkpoint file for a restart, use a command line such as

gmx mdrun —-cpi state

which directs mdrun to use the checkpoint file (which is named state.cpt by default). You can
choose to give the output checkpoint file a different name with the —cpo flag, but if so then you
must provide that name as input to —cpi when you later use that file. You can query the contents of
checkpoint files with gmx check (page 50) and gmx dump (page 77).

3.3.1 Appending to output files

By default, gmx mdrun (page 112) will append to the old output files. If the previous part ended in
a regular way, then the performance data at the end of the log file will will be removed, some new
information about the run context written, and the simulation will proceed. Otherwise, mdrun will
truncate all the output files back to the time of the last written checkpoint file, and continue from
there, as if the simulation stopped at that checkpoint in a regular way.

You can choose not to append the output files by using the —-noappend flag, which forces mdrun
to write each output to a separate file, whose name includes a “.partXXXX” string to describe which
simulation part is contained in this file. This numbering starts from zero and increases monotonically
as simulations are restarted, but does not reflect the number of simulation steps in each part. The
simulation-part (page 205) option can be used to set this number manually in gmx grompp
(page 94), which can be useful if data has been lost, e.g. through filesystem failure or user error.

Appending will not work if any output files have been modified or removed after mdrun wrote them,
because the checkpoint file maintains a checksum of each file that it will verify before it writes to
them again. In such cases, you must either restore the file, name them as the checkpoint file expects,
or continue with —-noappend. If your original run used —de ffnm, and you want appending, then
your continuations must also use —de f fnm.

3.3. Managing long simulations

27

GROMACS Documentation, Release 2020.7

3.3.2 Backing up your files

You should arrange to back up your simulation files frequently. Network file systems on clusters can
be configured in more or less conservative ways, and this can lead gmx mdrun (page 112) to be told
that a checkpoint file has been written to disk when actually it is still in memory somewhere and
vulnerable to a power failure or disk that fills or fails in the meantime. The UNIX tool rsync can be
a useful way to periodically copy your simulation output to a remote storage location, which works
safely even while the simulation is underway. Keeping a copy of the final checkpoint file from each
part of a job submitted to a cluster can be useful if a file system is unreliable.

3.3.3 Extending a .tpr file

If the simulation described by 7pr (page 432) file has completed and should be extended, use the gmx
convert-tpr (page 59) tool to extend the run, e.g.

gmx convert-tpr -s previous.tpr -extend timetoextendby -o next.tpr
gmx mdrun -s next.tpr -cpi state.cpt

The time can also be extended using the —~unt il and -nsteps options. Note that the original mdp
(page 426) file may have generated velocities, but that is a one-time operation within gmx grompp
(page 94) that is never performed again by any other tool.

3.3.4 Changing mdp options for a restart

If you wish to make changes to your simulations settings other than length, then you should do so in
the mdp (page 426) file or topology, and then call

gmx grompp —-f possibly-changed.mdp -p possibly-changed.top -c state.cpt -
0 new.tpr
gmx mdrun -s new.tpr -cpi state.cpt

to instruct gmx grompp (page 94) to copy the full-precision coordinates in the checkpoint file into
the new 7pr (page 432) file. You should consider your choices for t init (page 205), init-step
(page 205), nsteps (page 205) and simulation-part (page 205). You should generally not
regenerate velocities with gen—-vel (page 216), and generally select cont inuation (page 217)
so that constraints are not re-applied before the first integration step.

3.3.5 Restarts without checkpoint files

It used to be possible to continue simulations without the checkpoint files. As this approach could be
unreliable or lead to unphysical results, only restarts from checkpoints are permitted now.

3.3.6 Are continuations exact?

If you had a computer with unlimited precision, or if you integrated the time-discretized equations
of motion by hand, exact continuation would lead to identical results. But since practical computers
have limited precision and MD is chaotic, trajectories will diverge very rapidly even if one bit is
different. Such trajectories will all be equally valid, but eventually very different. Continuation
using a checkpoint file, using the same code compiled with the same compiler and running on the
same computer architecture using the same number of processors without GPUs (see next section)
would lead to binary identical results. However, by default the actual work load will be balanced
across the hardware according to the observed execution times. Such trajectories are in principle not
reproducible, and in particular a run that took place in more than one part will not be identical with
an equivalent run in one part - but neither of them is better in any sense.

3.3. Managing long simulations 28

GROMACS Documentation, Release 2020.7

3.3.7 Reproducibility

The following factors affect the reproducibility of a simulation, and thus its output:
¢ Precision (mixed / double) with double giving “better”” reproducibility.

¢ Number of cores, due to different order in which forces are accumulated. For instance (a+b)+c
is not necessarily binary identical to a+(b+c) in floating-point arithmetic.

* Type of processors. Even within the same processor family there can be slight differences.
* Optimization level when compiling.

* Optimizations at run time: e.g. the FFTW library that is typically used for fast Fourier trans-
forms determines at startup which version of their algorithms is fastest, and uses that for the
remainder of the calculations. Since the speed estimate is not deterministic, the results may vary
from run to run.

* Random numbers used for instance as a seed for generating velocities (in GROMACS at the
preprocessing stage).

 Uninitialized variables in the code (but there shouldn’t be any)
* Dynamic linking to different versions of shared libraries (e.g. for FFTs)

* Dynamic load balancing, since particles are redistributed to processors based on elapsed wall-
clock time, which will lead to (a+b)+c != a+(b+c) issues as above

* Number of PME-only ranks (for paralle]l PME simulations)

e MPI reductions typically do not guarantee the order of the operations, and so the absence of
associativity for floating-point arithmetic means the result of a reduction depends on the order
actually chosen

* On GPUs, the reduction of e.g. non-bonded forces has a non-deterministic summation order, so
any fast implementation is non-reprodudible by design.

The important question is whether it is a problem if simulations are not completely reproducible.
The answer is yes and no. Reproducibility is a cornerstone of science in general, and hence it is
important. The Central Limit Theorem tells us that in the case of infinitely long simulations, all
observables converge to their equilibrium values. Molecular simulations in GROMACS adhere to
this theorem, and hence, for instance, the energy of your system will converge to a finite value, the
diffusion constant of your water molecules will converge to a finite value, and so on. That means
all the important observables, which are the values you would like to get out of your simulation, are
reproducible. Each individual trajectory is not reproducible, however.

However, there are a few cases where it would be useful if trajectories were reproducible, too. These
include developers doing debugging, and searching for a rare event in a trajectory when, if it occurs,
you want to have manually saved your checkpoint file so you can restart the simulation under different
conditions, e.g. writing output much more frequently.

In order to obtain this reproducible trajectory, it is important to look over the list above and eliminate
the factors that could affect it. Further, using

gmx mdrun —-reprod

will eliminate all sources of non-reproducibility that it can, i.e. same executable + same hardware +
same shared libraries + same run input file + same command line parameters will lead to reproducible
results.

3.3. Managing long simulations 29

https://en.wikipedia.org/wiki/Central_limit_theorem

GROMACS Documentation, Release 2020.7

3.4 Answers to frequently asked questions (FAQs)

3.4.1 Questions regarding GROMACS installation

1. Do I need to compile all utilities with MPI?

With one rarely-used exception (pme_error (page 131)), only the mdrun (page 112) binary
is able to use the MPI (page 6) parallelism. So you only need to use the ~-DGMX_MP I=on
flag when configuring (page 8) for a build intended to run the main simulation engine mdrun
(page 112).

2. Should my version be compiled using double precision?

In general, GROMACS only needs to be build in its default mixed-precision mode. For more
details, see the discussion in Chapter 2 of the reference manual. Sometimes, usage may also de-
pend on your target system, and should be decided upon according to the individual instructions

(page 18).

3.4.2 Questions concerning system preparation and preprocessing

1. Where can I find a solvent coordinate file (page 421) for use with solvate (page 153)?

Suitable equilibrated boxes of solvent structure files (page 421) can be found in the SGMXDIR/
share/gromacs/top directory. That location will be searched by default by solvate
(page 153), for example by using —cs spc216.gro as an argument. Other solvent boxes
can be prepared by the user as described on the manual page for solvate (page 153) and else-
where. Note that suitable topology files will be needed for the solvent boxes to be useful in
grompp (page 94). These are available for some force fields, and may be found in the respective
subfolder of SGMXDIR/share/gromacs/top.

2. How to prevent solvate (page 153) from placing waters in undesired places?

Water placement is generally well behaved when solvating proteins, but can be difficult when
setting up membrane or micelle simulations. In those cases, waters may be placed in between the
alkyl chains of the lipids, leading to problems later during the simulation (page 272). You can
either remove those waters by hand (and do the accounting for molecule types in the fopology
(page 430) file), or set up a local copy of the vdwradii . dat file from the $GMXLIB directory,
specific for your project and located in your working directory. In it, you can increase the vdW
radius of the atoms, to suppress such interstitial insertions. Recommended e.g. at a common
tutorial is the use of 0.375 instead of 0.15.

1. How do I provide multiple definitions of bonds / dihedrals in a topology?

You can add additional bonded terms beyond those that are normally defined for a residue
(e.g. when defining a special ligand) by including additional copies of the respective lines
under the [bonds], [pairs], [angles] and [dihedrals] sections in the
[moleculetype] section for your molecule, found either in the itp (page 425) file or the
topology (page 430) file. This will add those extra terms to the potential energy evaluation, but
will not remove the previous ones. So be careful with duplicate entries. Also keep in mind
that this does not apply to duplicated entries for [bondtypes 1, [angletypes 1], or
[dihedraltypes 1, inforce-field definition files, where duplicates overwrite the previous
values.

2. Do I really need a gro (page 424) file?

The gro (page 424) file is used in GROMACS as a unified structure file (page 421) format that
can be read by all utilities. The large majority of GROMACS routines can also use other file
types such as pdb (page 428), with the limitations that no velocities are available in this case
(page 24). If you need a text-based format with more digits of precision, the g96 (page 424)
format is suitable and supported.

3.4. Answers to frequently asked questions (FAQs) 30

http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/membrane_protein/03_solvate.html

GROMACS Documentation, Release 2020.7

3. Do I always need to run pdb2gmx (page 128) when I already produced an itp (page 425) file
elsewhere?

You don’t need to prepare additional files if you already have all itp (page 425) and fop
(page 430) files prepared through other tools.

Examples for those are CHARMM-GUI, ATB (Automated Topology Builder), pmx. and PRO-
DRG.

4. How can I build in missing atoms?

GROMACS has no support for building coordinates of missing non-hydrogen atoms. If your
system is missing some part, you will have to add the missing pieces using external programs
to avoid the missing atom (page 262) error. This can be done using programs such as Chimera
in combination with Modeller, Swiss PDB Viewer, Maestro. Do not run a simulation that had
missing atoms unless you know exactly why it will be stable.

5. Why is the total charge of my system not an integer like it should be?

In floating point (page 281) math, real numbers can not be displayed to arbitrary precision (for
more on this, see e.g. Wikipedia). This means that very small differences to the final integer
value will persist, and GROMACS will not lie to you and round those values up or down. If
your charge differs from the integer value by a larger amount, e.g. at least 0.01, this usually
means that something went wrong during your system preparation

3.4.3 Questions regarding simulation methodology

1. Should I couple a handful of ions to their own temperature-coupling bath?

No. You need to consider the minimal size of your temperature coupling groups, as explained
in Thermostats (page 270) and more specifically in What not to do (page 271), as well as the
implementation of your chosen thermostat as described in the reference manual.

2. Why do my grompp restarts always start from time zero?
You can choose different values for t init (page 205) and init-step (page 205).
3. Why can’t I do conjugate gradient minimization with constraints?

Minimization with the conjugate gradient scheme can not be performed with constraints as
described in the reference manual, and some additional information on Wikipedia.

4. How do I hold atoms in place in my energy minimization or simulation?

Groups may be frozen in place using freeze groups (see the reference manual). It is more
common to use a set of position restraints, to place penalties on movement of the atoms. Files
that control this kind of behaviour can be created using genrestr (page 93).

5. How do I extend a completed a simulation to longer times?

Please see the section on Managing long simulations (page 27). You can either prepare a new
mdp (page 426) file, or extend the simulation time in the original 7pr (page 432) file using
convert-tpr (page 59).

6. How should I compute a single-point energy?

This is best achieved with the —rerun option to mdrun (page 112). See the Re-running a
simulation (page 241) section.

3.4.4 Parameterization and Force Fields

1. I want to simulate a molecule (protein, DNA, etc.) which complexes with various transition
metal ions, iron-sulfur clusters, or other exotic species. Parameters for these exotic species
aren’t available in force field X. What should I do?

3.4. Answers to frequently asked questions (FAQs) 31

http://www.charmm-gui.org/
https://atb.uq.edu.au/
http://pmx.mpibpc.mpg.de/instructions.html
http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
https://www.cgl.ucsf.edu/chimera/
https://salilab.org/modeller/
https://spdbv.vital-it.ch/
https://www.schrodinger.com/maestro
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Conjugate_gradient_method

GROMACS Documentation, Release 2020.7

First, you should consider how well MD (page 274) will actually describe your system (e.g.
see some of the recent literature). Many species are infeasible to model without either atomic
polarizability, or QM treatments. Then you need to prepare your own set of parameters and add
a new residue to your force field (page 275) of choice. Then you will have to validate that your
system behaves in a physical way, before continuing your simulation studies. You could also try
to build a more simplified model that does not rely on the complicated additions, as long as it
still represents the correct real object in the laboratory.

. Should I take parameters from one force field and apply them inside another that is missing

them?

NO. Molecules parametrized for a given force field (page 275) will not behave in a physical
manner when interacting with other molecules that have been parametrized according to differ-
ent standards. If your required molecule is not included in the force field you need to use, you
will have to parametrize it yourself according to the methodology of this force field.

3.4.5 Analysis and Visualization

1.

Why am I seeing bonds being created when I watch the trajectory?

Most visualization softwares determine the bond status of atoms depending on a set of prede-
fined distances. So the bonding pattern created by them might not be the one defined in your
topology (page 430) file. What matters is the information encoded in there. If the software has
read a fpr (page 432) file, then the information is in reliable agreement with the topology you
supplied to grompp (page 94).

When visualizing a trajectory from a simulation using PBC, why are there holes or my peptide
leaving the simulation box?

Those holes and molecules moving around are just a result of molecules ranging over the box
boundaries and wrapping around (page 269), and are not a reason for concern. You can fix the
visualization using trjconv (page 163) to prepare the structure for analysis.

. Why is my total simulation time not an integer like it should be?

As the simulation time is calculated using floating point arithmetic (page 281), rounding errors
can occur but are not of concern.

3.5 Force fields in GROMACS

3.5.1 AMBER

AMBER (Assisted Model Building and Energy Refinement) refers both to a set of molecular mechan-
ical force fields (page 275) for the simulation of biomolecules and a package of molecular simulation
programs.

GROMACS versions higher than 4.5 support the following AMBER force fields natively:

AMBER%
AMBER96
AMBER99
AMBER99SB
AMBER99SB-ILDN
AMBERO3
AMBERGS

3.5. Force fields in GROMACS

32

https://dx.doi.org/10.1021%2Facs.chemrev.6b00440
http://ambermd.org/

GROMACS Documentation, Release 2020.7

Information concerning the force field can be found using the following information:
* AMBER Force Fields - background about the AMBER force fields
* AMBER Programs - information about the AMBER suite of programs for molecular simulation

e ANTECHAMBER/GAFF - Generalized Amber Force Field (GAFF) which is supposed to
provide parameters suitable for small molecules that are compatible with the AMBER pro-
tein/nucleic acid force fields. It is available either together with AMBER, or through the an-
techamber package, which is also distributed separately. There are scripts available for con-
verting AMBER systems (set up, for example, with GAFF) to GROMACS (amb2gmx.pl, or
acpypi.py), but they do require an AMBER installation to work.

Older GROMACS versions need a separate installation of the ffamber ports:

» Using AMBER Force Field in GROMACS - known as the “ffamber ports,” a number of AMBER
force fields, complete with documentation.

» Using the ffamber ports with GROMACS requires that the input structure files adhere to the
AMBER nomenclature for residues. Problematic residues involve termini (prefixed with N and
C), lysine (either LYN or LYP), histidine (HID, HIE, or HIS), and cysteine (CYN or CYX).
Please see the ffamber documentation.

3.5.2 CHARMM

CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a both a set of force fields and a
software package for molecular dynamics (page 274) simulations and analysis. Includes united atom
(CHARMM19) and all atom (CHARMM?22, CHARMM?27, CHARMM36) force fields (page 275).
The CHARMM27 force field has been ported to GROMACS and is officially supported as of version
4.5. CHARMM36 force field files can be obtained from the MacKerell lab website, which regularly
produces up-to-date CHARMM force field files in GROMACS format.

For using CHARMM36 in GROMACS 5.0 and newer, please use the following settings in the mdp
(page 426) file:

constraints = h-bonds
cutoff-scheme = Verlet
vdwtype = cutoff
vdw-modifier = force-switch
rlist = 1.2

rvdw = 1.2

rvdw-switch = 1.0
coulombtype = PME

rcoulomb = 1.2

DispCorr = no

Note that dispersion correction should be applied in the case of lipid monolayers, but not bilayers.

Please also note that the switching distance is a matter of some debate in lipid bilayer simulations, and
it is dependent to some extent on the nature of the lipid. Some studies have found that an 0.8-1.0 nm
switch is appropriate, others argue 0.8-1.2 nm is best, and yet others stand by 1.0-1.2 nm. The user is
cautioned to thoroughly investigate the force field literature for their chosen lipid(s) before beginning
a simulation!

Anyone using very old versions of GROMACS may find this script useful:

CHARMM to GROMACS - perl scripts intended to facilitate calculations using GRO-
MACS programs and CHARMM forcefields (needed for GROMACS versions < 4.5).
(link)

3.5. Force fields in GROMACS

33

http://ambermd.org/#ff
http://ambermd.org/#code
http://ambermd.org/antechamber/antechamber.html
https://github.com/choderalab/mmtools/blob/master/converters/amb2gmx.pl
https://github.com/choderalab/mmtools/blob/master/converters/acpypi.py
http://chemistry.csulb.edu/ffamber/
http://chemistry.csulb.edu/ffamber/#usage
http://www.charmm.org/
http://mackerell.umaryland.edu/charmm_ff.shtml#gromacs
http://www.gromacs.org/@api/deki/files/76/=charmm_to_gromacs.tgz

GROMACS Documentation, Release 2020.7

3.5.3 GROMOS

GROMOS is is a general-purpose molecular dynamics computer simulation package for the study of
biomolecular systems. It also incorporates its own force field covering proteins, nucleotides, sugars
etc. and can be applied to chemical and physical systems ranging from glasses and liquid crystals, to
polymers and crystals and solutions of biomolecules.

GROMACS supports the GROMOS force fields, with all parameters provided in the distribution for
43al, 43a2, 45a3, 53a5, 53a6 and 54a7. The GROMOS force fields are united atom force fields
(page 275), i.e. without explicit aliphatic (non-polar) hydrogens.

* GROMOS 53a6 - in GROMACS format (J. Comput. Chem. 2004 vol. 25 (13): 1656-1676).
¢ GROMOS 53a5 - in GROMACS format (J. Comput. Chem. 2004 vol. 25 (13): 1656-1676).

* GROMOS 43alp - 43al modified to contain SEP (phosphoserine), TPO (phosphothreonine),
and PTR (phosphotyrosine) (all PO42- forms), and SEPH, TPOH, PTRH (PO4H- forms).

3.5.4 OPLS

OPLS (Optimized Potential for Liquid Simulations) is a set of force fields developed by Prof. William
L. Jorgensen for condensed phase simulations, with the latest version being OPLS-AA/M.

The standard implementations for those force fields are the BOSS and MCPRO programs developed
by the Jorgensen group

As there is no central web-page to point to, the user is advised to consult the original literature for the
united atom (OPLS-UA) and all atom (OPLS-AA) force fields, as well as the Jorgensen group page

3.6 Command-line reference

3.6.1 molecular dynamics simulation suite
Synopsis

gmx [—-[no]h] [-[no]lquiet] [-[no]version] [-[no]copyright] [-nice <int>]
[-[nolbackup]

Description

GROMACS is a full-featured suite of programs to perform molecular dynamics simulations, i.e., to
simulate the behavior of systems with hundreds to millions of particles using Newtonian equations
of motion. It is primarily used for research on proteins, lipids, and polymers, but can be applied to a
wide variety of chemical and biological research questions.

Options

Other options:

—[no]h (no) Print help and quit

—[nolquiet (no) Do not print common startup info or quotes
—[no]version (no) Print extended version information and quit
—[no]copyright (yes) Print copyright information on startup
—nice <int> (19) Set the nicelevel (default depends on command)

—[no]lbackup (yes) Write backups if output files exist

3.6. Command-line reference 34

http://www.igc.ethz.ch/gromos/
http://zarbi.chem.yale.edu/oplsaam.html
http://zarbi.chem.yale.edu/software.html
https://doi.org/10.1021%2Fja00214a001
https://doi.org/10.1021%2Fja9621760
http://zarbi.chem.yale.edu/

GROMACS Documentation, Release 2020.7

gmx commands

The following commands are available. Please refer to their individual man pages or gmx help
<command> for further details.

Trajectory analysis

gmx—-gangle (1) Calculate angles

gmx—convert—trj (1) Converts between different trajectory types

gmx—-distance (1) Calculate distances between pairs of positions

gmx-extract-cluster (1) Allows extracting frames corresponding to clusters from trajectory
gmx—-freevolume (1) Calculate free volume

gmx-pairdist (1) Calculate pairwise distances between groups of positions

gmx-rdf (1) Calculate radial distribution functions

gmx—-sasa (1) Compute solvent accessible surface area

gmx-select (1) Print general information about selections

gmx-trajectory (1) Print coordinates, velocities, and/or forces for selections

Generating topologies and coordinates

gmx—editconf (1) Edit the box and write subgroups

gmx-x2top (1) Generate a primitive topology from coordinates

gmx—-solvate (1) Solvate a system

gmx—-insert-molecules (1) Insert molecules into existing vacancies
gmx—-genconf (1) Multiply a conformation in ‘random’ orientations

gmx—-genion (1) Generate monoatomic ions on energetically favorable positions
gmx—genrestr (1) Generate position restraints or distance restraints for index groups

gmx—pdb2gmx (1) Convert coordinate files to topology and FF-compliant coordinate files

Running a simulation

gmx—grompp (1) Make a run input file
gmx-mdrun (1) Perform a simulation, do a normal mode analysis or an energy minimization

gmx—-convert—tpr (1) Make a modifed run-input file

Viewing trajectories

gmx-nmtraj (1) Generate a virtual oscillating trajectory from an eigenvector

gmx-view (1) View a trajectory on an X-Windows terminal

3.6. Command-line reference 35

GROMACS Documentation, Release 2020.7

Processing energies

gmx—enemat (1) Extract an energy matrix from an energy file
gmx—-energy (1) Writes energies to xvg files and display averages

gmx-mdrun (1) (Re)calculate energies for trajectory frames with -rerun

Converting files

gmx—editconf (1) Convert and manipulates structure files

gmx—-eneconv (1) Convert energy files

gmx-sigeps (1) Convert c6/12 or c6/cn combinations to and from sigma/epsilon
gmx—-trjcat (1) Concatenate trajectory files

gmx-trjconv (1) Convert and manipulates trajectory files

gmx-xpm2ps (1) Convert XPM (XPixelMap) matrices to postscript or XPM

Tools

gmx—-analyze (1) Analyze data sets

gmx—-awh (1) Extract data from an accelerated weight histogram (AWH) run
gmx-filter (1) Frequency filter trajectories, useful for making smooth movies
gmx-lie (1) Estimate free energy from linear combinations

gmx—-pme_error (1) Estimate the error of using PME with a given input file
gmx—-sham (1) Compute free energies or other histograms from histograms
gmx—-spatial (1) Calculate the spatial distribution function

gmx—-traj (1) Plotx, v, f, box, temperature and rotational energy from trajectories
gmx—tune_pme (1) Time mdrun as a function of PME ranks to optimize settings
gmx-wham (1) Perform weighted histogram analysis after umbrella sampling
gmx—-check (1) Check and compare files

gmx—dump (1) Make binary files human readable

gmx-make ndx (1) Make index files

gmx-mk_angndx (1) Generate index files for ‘gmx angle’

gmx-trjorder (1) Order molecules according to their distance to a group
gmx-xpm2ps (1) Convert XPM (XPixelMap) matrices to postscript or XPM

gmx-report-methods (1) Write short summary about the simulation setup to a text file and/or
to the standard output.

Distances between structures

gmx—-cluster (1) Cluster structures
gmx—-confrms (1) Fittwo structures and calculates the RMSD
gmx—-rms (1) Calculate RMSDs with a reference structure and RMSD matrices

gmx—-rmsf (1) Calculate atomic fluctuations

3.6. Command-line reference 36

GROMACS Documentation, Release 2020.7

Distances in structures over time

gmx-mindist (1) Calculate the minimum distance between two groups
gmx-mdmat (1) Calculate residue contact maps
gmx—-polystat (1) Calculate static properties of polymers

gmx-rmsdist (1) Calculate atom pair distances averaged with power -2, -3 or -6

Mass distribution properties over time

gmx—gyrate (1) Calculate the radius of gyration

gmx-msd (1) Calculates mean square displacements

gmx—-polystat (1) Calculate static properties of polymers

gmx—-rdf (1) Calculate radial distribution functions

gmx-rotacf (1) Calculate the rotational correlation function for molecules
gmx—-rotmat (1) Plot the rotation matrix for fitting to a reference structure
gmx—-sans (1) Compute small angle neutron scattering spectra

gmx-saxs (1) Compute small angle X-ray scattering spectra

gmx—-traj (1) Plotx, v, f, box, temperature and rotational energy from trajectories

gmx-vanhove (1) Compute Van Hove displacement and correlation functions

Analyzing bonded interactions

gmx—-angle (1) Calculate distributions and correlations for angles and dihedrals

gmx-mk_angndx (1) Generate index files for ‘gmx angle’

Structural properties

gmx—-bundle (1) Analyze bundles of axes, e.g., helices

gmx-clustsize (1) Calculate size distributions of atomic clusters
gmx—-disre (1) Analyze distance restraints

gmx—-hbond (1) Compute and analyze hydrogen bonds

gmx-order (1) Compute the order parameter per atom for carbon tails
gmx-principal (1) Calculate principal axes of inertia for a group of atoms
gmx—-rdf (1) Calculate radial distribution functions

gmx—-saltbr (1) Compute salt bridges

gmx—-sorient (1) Analyze solvent orientation around solutes

gmx—-spol (1) Analyze solvent dipole orientation and polarization around solutes

3.6. Command-line reference 37

GROMACS Documentation, Release 2020.7

Kinetic properties

gmx-bar (1) Calculate free energy difference estimates through Bennett’s acceptance ratio
gmx—current (1) Calculate dielectric constants and current autocorrelation function
gmx—dos (1) Analyze density of states and properties based on that

gmx-dyecoupl (1) Extract dye dynamics from trajectories

gmx-principal (1) Calculate principal axes of inertia for a group of atoms

gmx—tcaf (1) Calculate viscosities of liquids

gmx-traj (1) Plotx, v, f, box, temperature and rotational energy from trajectories
gmx-vanhove (1) Compute Van Hove displacement and correlation functions

gmx-velacc (1) Calculate velocity autocorrelation functions

Electrostatic properties

gmx—current (1) Calculate dielectric constants and current autocorrelation function
gmx—-dielectric (1) Calculate frequency dependent dielectric constants
gmx-dipoles (1) Compute the total dipole plus fluctuations

gmx—-potential (1) Calculate the electrostatic potential across the box

gmx-spol (1) Analyze solvent dipole orientation and polarization around solutes

gmx—-genion (1) Generate monoatomic ions on energetically favorable positions

Protein-specific analysis

gmx-do_dssp (1) Assign secondary structure and calculate solvent accessible surface area
gmx—chi (1) Calculate everything you want to know about chi and other dihedrals
gmx-helix (1) Calculate basic properties of alpha helices

gmx-helixorient (1) Calculate local pitch/bending/rotation/orientation inside helices
gmx-rama (1) Compute Ramachandran plots

gmx-wheel (1) Plot helical wheels

Interfaces

gmx-bundle (1) Analyze bundles of axes, e.g., helices

gmx—-density (1) Calculate the density of the system

gmx—-densmap (1) Calculate 2D planar or axial-radial density maps
gmx—-densorder (1) Calculate surface fluctuations

gmx-h2order (1) Compute the orientation of water molecules
gmx-hydorder (1) Compute tetrahedrality parameters around a given atom
gmx-order (1) Compute the order parameter per atom for carbon tails

gmx-potential (1) Calculate the electrostatic potential across the box

3.6. Command-line reference 38

GROMACS Documentation, Release 2020.7

Covariance analysis

gmx—-anaeig (1) Analyze the eigenvectors
gmx—-covar (1) Calculate and diagonalize the covariance matrix

gmx-make_edi (1) Generate input files for essential dynamics sampling

Normal modes

gmx—-anaeig (1) Analyze the normal modes

gmx-nmeig (1) Diagonalize the Hessian for normal mode analysis
gmx—-nmtraj (1) Generate a virtual oscillating trajectory from an eigenvector
gmx—-nmens (1) Generate an ensemble of structures from the normal modes
gmx—-grompp (1) Make a run input file

gmx-mdrun (1) Find a potential energy minimum and calculate the Hessian

3.6.2 gmx anaeig
Synopsis

gmx anaeig [—v [<.trr/.cpt/...>]] [=-v2 [<.trr/.cpt/...>]]

[-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]

[-n [<.ndx>]] [-eig [<.xvg>]] [-eig2 [<.xvg>]]

[-comp [<.xvg>]] [-rmsf [<.xvg>]] [-proj [<.xvg>]]

[-2d [<.xvg>]] [-3d [<.gro/.g96/...>]]

[-filt [<.xtc/.trr/...>]] [-extr [<.xtc/.trr/...>]]
[-over [<.xvg>]] [—1npr [<.xpm>]] [-b <time>] [—-e <time>]
[-dt <time>] [-tu <enum>] [-[nolw] [-xvg <enum>]

[-first <int>] [-last <int>] [-skip <int>] [-max <real>]
[-nframes <int>] [—-[no]lsplit] [—-[no]entropy]

[-temp <real>] [—-nevskip <int>]

Description

gmx anaeig analyzes eigenvectors. The eigenvectors can be of a covariance matrix (gmx covar
(page 61)) or of a Normal Modes analysis (gmx nmeig (page 119)).

When a trajectory is projected on eigenvectors, all structures are fitted to the structure in the eigenvec-
tor file, if present, otherwise to the structure in the structure file. When no run input file is supplied,
periodicity will not be taken into account. Most analyses are performed on eigenvectors —first to
—-last, but when —first is set to -1 you will be prompted for a selection.

—comp: plot the vector components per atom of eigenvectors —first to —last.
—-rmsf: plot the RMS fluctuation per atom of eigenvectors —first to —last (requires —eig).

—proj: calculate projections of a trajectory on eigenvectors —first to —last. The projections of
a trajectory on the eigenvectors of its covariance matrix are called principal components (pc’s). It is
often useful to check the cosine content of the pc’s, since the pc’s of random diffusion are cosines
with the number of periods equal to half the pc index. The cosine content of the pc’s can be calculated
with the program gmx analyze (page 41).

—2d: calculate a 2d projection of a trajectory on eigenvectors —first and -last.

—3d: calculate a 3d projection of a trajectory on the first three selected eigenvectors.

3.6. Command-line reference

39

GROMACS Documentation, Release 2020.7

—filt: filter the trajectory to show only the motion along eigenvectors —first to —last.

—extr: calculate the two extreme projections along a trajectory on the average structure and in-
terpolate —nframes frames between them, or set your own extremes with -max. The eigenvector
—first will be written unless —~-first and —1ast have been set explicitly, in which case all eigen-
vectors will be written to separate files. Chain identifiers will be added when writing a .pdb (page 428)
file with two or three structures (you can use rasmol -nmrpdb to view such a.pdb (page 428) file).

Overlap calculations between covariance analysis

Note: the analysis should use the same fitting structure

—over: calculate the subspace overlap of the eigenvectors in file —v2 with eigenvectors —~first to
—-last infile -v.

—inpr: calculate a matrix of inner-products between eigenvectors in files —v and —v2. All eigen-
vectors of both files will be used unless —first and —1last have been set explicitly.

When -v and —-v2 are given, a single number for the overlap between the covariance matrices is
generated. Note that the eigenvalues are by default read from the timestamp field in the eigenvector
input files, but when —eig, or —~eig2 are given, the corresponding eigenvalues are used instead. The
formulas are:

difference = sqgrt(tr((sgrt (M1) - sgrt(M2))"2))
normalized overlap = 1 - difference/sqrt (tr(M1l) + tr(M2))
shape overlap = 1 - sqgrt(tr((sgrt(M1/tr(M1)) - sgrt(M2/tr(M2)))"2))

where M1 and M2 are the two covariance matrices and tr is the trace of a matrix. The numbers are
proportional to the overlap of the square root of the fluctuations. The normalized overlap is the most
useful number, it is 1 for identical matrices and O when the sampled subspaces are orthogonal.

When the —ent ropy flag is given an entropy estimate will be computed based on the Quasiharmonic
approach and based on Schlitter’s formula.

Options

Options to specify input files:

=v [<.trr/.cpt/...>] (eigenvec.trr) Full precision trajectory: frr (page 432) cpt (page 422) tng
(page 430)

-v2 [<.trr/.cpt/...>] (eigenvec2.trr) (Optional) Full precision trajectory: trr (page 432) cpt
(page 422) tng (page 430)

—-f [<.xte/.trr/. .. >] (traj.xtc) (Optional) Trajectory: xtc (page 433) trr (page 432) cpt (page 422)
gro (page 424) g96 (page 424) pdb (page 428) tng (page 430)

-s [<.tpr/.gro/...>] (topol.tpr) (Optional) Structure+mass(db): 7pr (page 432) gro (page 424) g96
(page 424) pdb (page 428) brk ent

—-n [<.ndx>] (index.ndx) (Optional) Index file

—eig [<.xvg>] (eigenval.xvg) (Optional) xvgr/xmgr file
—-eig2 [<.xvg>] (eigenval2.xvg) (Optional) xvgr/xmgr file
Options to specify output files:

—comp [<.xvg>] (eigcomp.xvg) (Optional) xvgr/xmgr file
-rmsf [<.xvg>] (eigrmsf.xvg) (Optional) xvgr/xmgr file
—-proj [<.xvg>] (proj.xvg) (Optional) xvgr/xmgr file
—-2d [<.xvg>] (2dproj.xvg) (Optional) xvgr/xmgr file

. Command-line reference 40

GROMACS Documentation, Release 2020.7

—3d [<.gro/.g96/...>] (3dproj.pdb) (Optional) Structure file: gro (page 424) g96 (page 424) pdb
(page 428) brk ent esp

-£filt [<.xte/ltrr/...>] (filtered.xtc) (Optional) Trajectory: xrc (page 433) trr (page 432) cpt
(page 422) gro (page 424) g96 (page 424) pdb (page 428) tng (page 430)

—extr [<.xte/trr/...>] (extreme.pdb) (Optional) Trajectory: xtc (page 433) trr (page 432) cpt
(page 422) gro (page 424) g96 (page 424) pdb (page 428) tng (page 430)

—over [<.xvg>] (overlap.xvg) (Optional) xvgr/xmgr file

—inpr [<.xpm>] (inprod.xpm) (Optional) X PixMap compatible matrix file
Other options:

-b <time> (0) Time of first frame to read from trajectory (default unit ps)

—e <time> (0) Time of last frame to read from trajectory (default unit ps)
—dt <time> (0) Only use frame when t MOD dt = first time (default unit ps)
—tu <enum> (ps) Unit for time values: fs, ps, ns, us, ms, s

—[no]w (no) View output .xvg (page 435), .xpm (page 433), .eps (page 423) and .pdb (page 428)
files

—xvg <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none
—-first <int> (1) First eigenvector for analysis (-1 is select)

—last <int> (-1) Last eigenvector for analysis (-1 is till the last)
—skip <int> (1) Only analyse every nr-th frame

—-max <real> (0) Maximum for projection of the eigenvector on the average structure, max=0 gives
the extremes

-nframes <int> (2) Number of frames for the extremes output
—[nolsplit (no) Split eigenvector projections where time is zero

—[no]entropy (no) Compute entropy according to the Quasiharmonic formula or Schlitter’s
method.

—temp <real> (298.15) Temperature for entropy calculations

—-nevskip <int> (6) Number of eigenvalues to skip when computing the entropy due to the quasi
harmonic approximation. When you do a rotational and/or translational fit prior to the covari-
ance analysis, you get 3 or 6 eigenvalues that are very close to zero, and which should not be
taken into account when computing the entropy.

3.6.3 gmx analyze
Synopsis

gmx analyze [-f [<.xvg>]] [—-ac [<.xvg>]] [-msd [<.xvg>]] [-cc [<.xvg>]]
[-dist [<.xvg>]] [—-av [<.xvg>]] [-ee [<.xvg>]]

[-fitted [<.xvg>]] [-g [<.log>]] [—-[no]lw] [—-xvg <enum>]
[-[no]ltime] [-b <real>] [-e <real>] [-n <int>] [-[no]ld]
[-bw <real>] [—-errbar <enum>] [-[no]integrate]

[-aver_start <real>] [-[nolxydy] [-[no]regression]
[-[no]luzar] [-temp <real>] [—-fitstart <real>]

[-fitend <real>] [—-filter <real>] [—-[no]power]

[-[no]lsubav] [—-[no]oneacf] [—acflen <int>]

[-[no]lnormalize] [-P <enum>] [—-fitfn <enum>]

[-beginfit <real>] [—-endfit <real>]

3.6. Command-line reference 41

GROMACS Documentation, Release 2020.7

Description

gmx analyze reads an ASCII file and analyzes data sets. A line in the input file may start with a
time (see option —t ime) and any number of y-values may follow. Multiple sets can also be read when
they are separated by & (option —n); in this case only one y-value is read from each line. All lines
starting with # and @ are skipped. All analyses can also be done for the derivative of a set (option
-d).

All options, except for —av and —~power, assume that the points are equidistant in time.

gmx analyze always shows the average and standard deviation of each set, as well as the rela-
tive deviation of the third and fourth cumulant from those of a Gaussian distribution with the same
standard deviation.

Option —ac produces the autocorrelation function(s). Be sure that the time interval between data
points is much shorter than the time scale of the autocorrelation.

Option —cc plots the resemblance of set i with a cosine of i/2 periods. The formula is:

2 (integral from 0 to T of y(t) cos(i pi t) dt)"2
/ integral from 0 to T of y”2(t) dt

This is useful for principal components obtained from covariance analysis, since the principal com-
ponents of random diffusion are pure cosines.

Option —msd produces the mean square displacement(s).
Option —dist produces distribution plot(s).

Option —av produces the average over the sets. Error bars can be added with the option —errbar.
The errorbars can represent the standard deviation, the error (assuming the points are independent) or
the interval containing 90% of the points, by discarding 5% of the points at the top and the bottom.

Option —ee produces error estimates using block averaging. A set is divided in a number of blocks
and averages are calculated for each block. The error for the total average is calculated from the
variance between averages of the m blocks B_i as follows: error*2 = sum (B_i -)"2 / (m*(m-1)).
These errors are plotted as a function of the block size. Also an analytical block average curve is
plotted, assuming that the autocorrelation is a sum of two exponentials. The analytical curve for the
block average is:

f(t) = sigma’ "+ “sqgrt(2/T (alpha
(tau_1l ((exp(-t/tau_1l) - 1)
tau_1/t + 1)) +

(l-alpha) (tau_2

((exp(-t/tau_2) - 1) tau_2/t +
1)))),

where T is the total time. alpha, tau_1 and tau_2 are obtained by fitting fA2(t) to error*2. When the
actual block average is very close to the analytical curve, the error is sigma*‘*‘‘sqrt(2/T (a tau_1 +
(1-a) tau_2)). The complete derivation is given in B. Hess, J. Chem. Phys. 116:209-217, 2002.

Option —f1ilter prints the RMS high-frequency fluctuation of each set and over all sets with respect
to a filtered average. The filter is proportional to cos(pi t/len) where t goes from -len/2 to len/2. len
is supplied with the option —filter. This filter reduces oscillations with period len/2 and len by a
factor of 0.79 and 0.33 respectively.

Option —g fits the data to the function given with option —fit fn.

Option —power fits the data to b t*a, which is accomplished by fitting to a t + b on log-log scale. All
points after the first zero or with a negative value are ignored.

Option —luzar performs a Luzar & Chandler kinetics analysis on output from gmx hbond (page 99).
The input file can be taken directly from gmx hbond -ac, and then the same result should be
produced.

3.6. Command-line reference

42

GROMACS Documentation, Release 2020.7

Option —fit fn performs curve fitting to a number of different curves that make sense in the context
of molecular dynamics, mainly exponential curves. More information is in the manual. To check the
output of the fitting procedure the option —fitted will print both the original data and the fitted
function to a new data file. The fitting parameters are stored as comment in the output file.

Options

Options to specify input files:

—f [<.xvg>] (graph.xvg) xvgr/xmgr file

Options to specify output files:

—ac [<.xvg>] (autocorr.xvg) (Optional) xvgr/xmgr file
-msd [<.xvg>] (msd.xvg) (Optional) xvgr/xmgr file
—cc [<.xvg>] (coscont.xvg) (Optional) xvgr/xmgr file
—dist [<.xvg>] (distr.xvg) (Optional) xvgr/xmgr file
—av [<.xvg>] (average.xvg) (Optional) xvgr/xmgr file
—ee [<.xvg>] (errest.xvg) (Optional) xvgr/xmgr file
—-fitted [<.xvg>] (fitted.xvg) (Optional) xvgr/xmgr file
—g [<.log>] (fitlog.log) (Optional) Log file

Other options:

—[no]lw (no) View output .xvg (page 435), .xpm (page 433), .eps (page 423) and .pdb (page 428)
files

—-xvg <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none
—[no]time (yes) Expect a time in the input

—-b <real> (-1) First time to read from set

—e <real> (-1) Last time to read from set

—n <int> (1) Read this number of sets separated by &

—[nold (no) Use the derivative

-bw <real> (0.1) Binwidth for the distribution

—errbar <enum> (none) Error bars for —av: none, stddev, error, 90
—-[no]integrate (no) Integrate data function(s) numerically using trapezium rule
—aver_start <real> (0) Start averaging the integral from here

—[no]xydy (no) Interpret second data set as error in the y values for integrating

—[no]regression (no) Perform a linear regression analysis on the data. If —xydy is set a second
set will be interpreted as the error bar in the Y value. Otherwise, if multiple data sets are present
a multilinear regression will be performed yielding the constant A that minimize chi*2 = (y -
A 0x 0-A_1x_1-... -A_Nx_N)"2 where now Y is the first data set in the input file and
x_i the others. Do read the information at the option —t ime.

—[no]luzar (no) Do a Luzar and Chandler analysis on a correlation function and related as pro-
duced by gmx hbond (page 99). When in addition the —xydy flag is given the second and fourth
column will be interpreted as errors in c(t) and n(t).

—temp <real> (298.15) Temperature for the Luzar hydrogen bonding kinetics analysis (K)

—fitstart <real> (1) Time (ps) from which to start fitting the correlation functions in order to
obtain the forward and backward rate constants for HB breaking and formation

3.6.

Command-line reference 43

GROMACS Documentation, Release 2020.7

—fitend <real> (60) Time (ps) where to stop fitting the correlation functions in order to obtain the
forward and backward rate constants for HB breaking and formation. Only with —gem

—filter <real> (0) Print the high-frequency fluctuation after filtering with a cosine filter of this
length

- [no]power (no) Fitdatato: b tha

—[no]subav (yes) Subtract the average before autocorrelating

—[no]oneacf (no) Calculate one ACF over all sets

—acflen <int> (-1) Length of the ACF, default is half the number of frames
—[no]lnormalize (yes) Normalize ACF

—P <enum> (0) Order of Legendre polynomial for ACF (0 indicates none): O, 1,2, 3
—fitfn <enum> (none) Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9
-beginfit <real> (0) Time where to begin the exponential fit of the correlation function

—endfit <real> (-1) Time where to end the exponential fit of the correlation function, -1 is until
the end

3.6.4 gmx angle
Synopsis

gmx angle [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-od [<.xvg>]]

[mov [<.xvg>]] [=of [<.xvg>]] [-ot [<.xvg>]] [-oh [<.xvg>]]

[-oc [<.xvg>]] [—-or [<.trr>]] [-b <time>] [—e <time>]
[-dt <time>] [-[no]lw] [—-xvg <enum>] [-type <enum>]
[-[nolall] [-binwidth <real>] [-[no]lperiodic]
[-[no]chandler] [-[no]avercorr] [—acflen <int>]
[-[no]lnormalize] [-P <enum>] [—-fitfn <enum>]
[-beginfit <real>] [—endfit <real>]

Description

gmx angle computes the angle distribution for a number of angles or dihedrals.

With option —ov, you can plot the average angle of a group of angles as a function of time. With the
—all option, the first graph is the average and the rest are the individual angles.

With the —of option, gmx angle also calculates the fraction of trans dihedrals (only for dihedrals)
as function of time, but this is probably only fun for a select few.

With option —oc, a dihedral correlation function is calculated.

It should be noted that the index file must contain atom triplets for angles or atom quadruplets for
dihedrals. If this is not the case, the program will crash.

With option —or, a trajectory file is dumped containing cos and sin of selected dihedral angles, which
subsequently can be used as input for a principal components analysis using gmx covar (page 61).

Option —ot plots when transitions occur between dihedral rotamers of multiplicity 3 and —oh records
a histogram of the times between such transitions, assuming the input trajectory frames are equally
spaced in time.

3.6.

Command-line reference

GROMACS Documentation, Release 2020.7

Options

Options to specify input files:

—f [<.xte/.trr/...>] (traj.xtc) Trajectory: xfc (page 433) trr (page 432) cpt (page 422) gro
(page 424) g96 (page 424) pdb (page 428) tng (page 430)

—-n [<.ndx>] (angle.ndx) Index file

Options to specify output files:

—od [<.xvg>] (angdist.xvg) xvgr/xmgr file

—ov [<.xvg>] (angaver.xvg) (Optional) xvgr/xmgr file

—of [<.xvg>] (dihfrac.xvg) (Optional) xvgr/xmgr file

—ot [<.xvg>] (dihtrans.xvg) (Optional) xvgr/xmgr file

—oh [<.xvg>] (trhisto.xvg) (Optional) xvgr/xmgr file

—oc [<.xvg>] (dihcorr.xvg) (Optional) xvgr/xmgr file

—or [<.trr>] (traj.trr) (Optional) Trajectory in portable xdr format
Other options:

-b <time> (0) Time of first frame to read from trajectory (default unit ps)
—e <time> (0) Time of last frame to read from trajectory (default unit ps)
—dt <time> (0) Only use frame when t MOD dt = first time (default unit ps)

—[no]w (no) View output .xvg (page 435), .xpm (page 433), .eps (page 423) and .pdb (page 428)
files

—-xvg <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none
—type <enum> (angle) Type of angle to analyse: angle, dihedral, improper, ryckaert-bellemans

—[no]all (no) Plotall angles separately in the averages file, in the order of appearance in the index
file.

-binwidth <real> (1) binwidth (degrees) for calculating the distribution
—[no]periodic (yes) Print dihedral angles modulo 360 degrees

—[no]chandler (no) Use Chandler correlation function (N[trans] = 1, N[gauche] = 0) rather than
cosine correlation function. Trans is defined as phi < -60 or phi > 60.

—[no]avercorr (no) Average the correlation functions for the individual angles/dihedrals
—acflen <int> (-1) Length of the ACF, default is half the number of frames
—[no]lnormalize (yes) Normalize ACF

—P <enum> (0) Order of Legendre polynomial for ACF (0 indicates none): 0, 1,2, 3
—fitfn <enum> (none) Fit function: none, exp, aexp, exp_exp, expJ, exp7, exp9
-beginfit <real> (0) Time where to begin the exponential fit of the correlation function

—endfit <real> (-1) Time where to end the exponential fit of the correlation function, -1 is until
the end

Known Issues

» Counting transitions only works for dihedrals with multiplicity 3

3.6. Command-line reference 45

GROMACS Documentation, Release 2020.7

3.6.5 gmx awh

Synopsis

gmx awh [—-f [<.edr>]] [-s [<.tpr>]] [-o [<.xvg>]] [—-fric [<.xvg>]]
[-b <time>] [-e <time>] [-[no]lw] [—-xvg <enum>] [-skip <int>]
[-[no]lmore] [-[no]lkt]

Description

gmx awh extracts AWH data from an energy file. One or two files are written per AWH bias per
time frame. The bias index, if more than one, is appended to the file, as well as the time of the frame.
By default only the PMF is printed. With —more the bias, target and coordinate distributions are
also printed. With —more the bias, target and coordinate distributions are also printed, as well as
the metric sqrt(det(friction_tensor)) normalized such that the average is 1. Option —fric prints all
components of the friction tensor to an additional set of files.

Options

Options to specify input files:

—f [<.edr>] (ener.edr) Energy file

-s [<.tpr>] (topol.tpr) Portable xdr run input file

Options to specify output files:

-o [<.xvg>] (awh.xvg) xvgr/xmgr file

—fric [<.xvg>] (friction.xvg) (Optional) xvgr/xmgr file

Other options:

-b <time> (0) Time of first frame to read from trajectory (default unit ps)
—e <time> (0) Time of last frame to read from trajectory (default unit ps)

—[no]w (no) View output .xvg (page 435), .xpm (page 433), .eps (page 423) and .pdb (page 428)
files

—xvg <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none
—skip <int> (0) Skip number of frames between data points
—[no]more (no) Print more output

—[no]kt (no) Print free energy output in units of kT instead of kJ/mol

3.6.6 gmx bar

Synopsis

gmx bar [-f [<.xvg> [...]]] [-g [<.edr> [...]]] [-o [<.xvg>]]
[-oi [<.xvg>]] [-oh [<.xvg>]] [-[no]lw] [—-xvg <enum>]
[-b <real>] [-e <real>] [-temp <real>] [—-prec <int>]
[-nbmin <int>] [—-nbmax <int>] [-nbin <int>] [—-[nolextp]

3.6. Command-line reference

46

GROMACS Documentation, Release 2020.7

Description

gmx bar calculates free energy difference estimates through Bennett’s acceptance ratio method
(BAR). It also automatically adds series of individual free energies obtained with BAR into a com-
bined free energy estimate.

Every individual BAR free energy difference relies on two simulations at different states: say state
A and state B, as controlled by a parameter, lambda (see the .mdp (page 426) parameter init_ -
lambda). The BAR method calculates a ratio of weighted average of the Hamiltonian difference
of state B given state A and vice versa. The energy differences to the other state must be calculated
explicitly during the simulation. This can be done with the .mdp (page 426) option foreign_-
lambda.

Input option — £ expects multiple dhd1 . xvg files. Two types of input files are supported:

* Files with more than one y-value. The files should have columns with dH/dlambda and Delta-
lambda. The lambda values are inferred from the legends: lambda of the simulation from the
legend of dH/dlambda and the foreign lambda values from the legends of Delta H

* Files with only one y-value. Using the —~ext p option for these files, it is assumed that the y-value
is dH/dlambda and that the Hamiltonian depends linearly on lambda. The lambda value of the
simulation is inferred from the subtitle (if present), otherwise from a number in the subdirectory
in the file name.

The lambda of the simulation is parsed from dhd1l . xvg file’s legend containing the string ‘dH’, the
foreign lambda values from the legend containing the capitalized letters ‘D’ and ‘H’. The temperature
is parsed from the legend line containing ‘T =’.

The input option —g expects multiple .edr (page 423) files. These can contain either lists of energy
differences (see the .mdp (page 426) option separate_dhdl_file), or a series of histograms
(see the .mdp (page 426) options dh_hist_size and dh_hist_spacing). The temperature
and lambda values are automatically deduced from the ener . edr file.

In addition to the .mdp (page 426) option foreign_lambda, the energy difference can also be
extrapolated from the dH/dlambda values. This is done with the‘‘-extp‘‘ option, which assumes that
the system’s Hamiltonian depends linearly on lambda, which is not normally the case.

The free energy estimates are determined using BAR with bisection, with the precision of the output
set with —-prec. An error estimate taking into account time correlations is made by splitting the data
into blocks and determining the free energy differences over those blocks and assuming the blocks
are independent. The final error estimate is determined from the average variance over 5 blocks. A
range of block numbers for error estimation can be provided with the options —nbmin and —nbmax.

gmx bar tries to aggregate samples with the same ‘native’ and ‘foreign’ lambda values, but always
assumes independent samples. Note that when aggregating energy differences/derivatives with differ-
ent sampling intervals, this is almost certainly not correct. Usually subsequent energies are correlated
and different time intervals mean different degrees of correlation between samples.

The results are split in two parts: the last part contains the final results in kJ/mol, together with the
error estimate for each part and the total. The first part contains detailed free energy difference esti-
mates and phase space overlap measures in units of kT (together with their computed error estimate).
The printed values are:

* lam_A: the lambda values for point A.

e lam_B: the lambda values for point B.

* DG: the free energy estimate.

* s_A: an estimate of the relative entropy of B in A.
* s_B: an estimate of the relative entropy of A in B.

* stdev: an estimate expected per-sample standard deviation.

3.6. Command-line reference 47

GROMACS Documentation, Release 2020.7

The relative entropy of both states in each other’s ensemble can be interpreted as a measure of phase
space overlap: the relative entropy s_A of the work samples of lambda_B in the ensemble of lambda_-
A (and vice versa for s_B), is a measure of the ‘distance’ between Boltzmann distributions of the two
states, that goes to zero for identical distributions. See Wu & Kofke, J. Chem. Phys. 123 084109
(2005) for more information.

The estimate of the expected per-sample standard deviation, as given in Bennett’s original BAR paper:
Bennett, J. Comp. Phys. 22, p 245 (1976). Eq. 10 therein gives an estimate of the quality of sampling
(not directly of the actual statistical error, because it assumes independent samples).

To get a visual estimate of the phase space overlap, use the —oh option to write series of histograms,
together with the —nbin option.

Options

Options to specify input files:

—f [<.xvg> [...]] (dhdl.xvg) (Optional) xvgr/xmgr file
—g [<.edr> [...]] (ener.edr) (Optional) Energy file
Options to specify output files:

-o [<.xvg>] (bar.xvg) (Optional) xvgr/xmgr file

—oi [<.xvg>] (barint.xvg) (Optional) xvgr/xmgr file
—oh [<.xvg>] (histogram.xvg) (Optional) xvgr/xmgr file
Other options:

—[no]w (no) View output .xvg (page 435), .xpm (page 433), .eps (page 423) and .pdb (page 428)
files

—xvg <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none
-b <real> (0) Begin time for BAR

—e <real> (-1) End time for BAR

—temp <real> (-1) Temperature (K)

—prec <int> (2) The number of digits after the decimal point
—nbmin <int> (5) Minimum number of blocks for error estimation
—nbmax <int> (5) Maximum number of blocks for error estimation
—nbin <int> (100) Number of bins for histogram output

—[no]extp (no) Whether to linearly extrapolate dH/dI values to use as energies

3.6.7 gmx bundle
Synopsis

gmx bundle [
[0l [<.xvg>]] [-od [<.xvg>]] [—-oz [<.xvg>]]

[-ot [<.xvg>]] [-otr [<.xvg>]] [-otl [<.xvg>]]

[-ok [<.xvg>]] [=okr [<.xvg>]] [-okl [<.xvg>]]

[-oa [<.pdb>]] [-b <time>] [—-e <time>] [-dt <time>]

[-tu <enum>] [-xvg <enum>] [—-na <int>] [—[no]z]

-f [<.xtc/.trr/...>]] [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]

3.6. Command-line reference

48

GROMACS Documentation, Release 2020.7

Description

gmx bundle analyzes bundles of axes. The axes can be for instance helix axes. The program reads
two index groups and divides both of them in —na parts. The centers of mass of these parts define the
tops and bottoms of the axes. Several quantities are written to file: the axis length, the distance and
the z-shift of the axis mid-points with respect to the average center of all axes, the total tilt, the radial
tilt and the lateral tilt with respect to the average axis.

With options —ok, —okr and —ok1 the total, radial and lateral kinks of the axes are plotted. An extra
index group of kink atoms is required, which is also divided into —na parts. The kink angle is defined
as the angle between the kink-top and the bottom-kink vectors.

With option —oa the top, mid (or kink when —ok is set) and bottom points of each axis are written
to a .pdb (page 428) file each frame. The residue numbers correspond to the axis numbers. When
viewing this file with Rasmol, use the command line option —nmrpdb, and type set axis true
to display the reference axis.

Options

Options to specify input files:

—f [<.xte/.trr/...>] (traj.xtc) Trajectory: xfc (page 433) trr (page 432) cpt (page 422) gro
(page 424) g96 (page 424) pdb (page 428) tng (page 430)

-s [<.tpr/.gro/...>] (topol.tpr) Structure+mass(db): 7pr (page 432) gro (page 424) g96 (page 424)
pdb (page 428) brk ent

—-n [<.ndx>] (index.ndx) (Optional) Index file

Options to specify output files:

-0l [<.xvg>] (bun_len.xvg) xvgr/xmgr file

—od [<.xvg>] (bun_dist.xvg) xvgr/xmgr file

—-oz [<.xvg>] (bun_z.xvg) xvgr/xmgr file

—ot [<.xvg>] (bun_tilt.xvg) xvgr/xmgr file

—otr [<.xvg>] (bun_tiltr.xvg) xvgr/xmgr file

—ot1 [<.xvg>] (bun_tiltl.xvg) xvgr/xmgr file

—ok [<.xvg>] (bun_kink.xvg) (Optional) xvgr/xmgr file

—okr [<.xvg>] (bun_Kkinkr.xvg) (Optional) xvgr/xmgr file

—ok1 [<.xvg>] (bun_kinkl.xvg) (Optional) xvgr/xmgr file

—oa [<.pdb>] (axes.pdb) (Optional) Protein data bank file

Other options:

-b <time> (0) Time of first frame to read from trajectory (default unit ps)
—e <time> (0) Time of last frame to read from trajectory (default unit ps)
—dt <time> (0) Only use frame when t MOD dt = first time (default unit ps)
—tu <enum> (ps) Unit for time values: fs, ps, ns, us, ms, s

—-xvg <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none
—na <int> (0) Number of axes

—[no] z (no) Use the z-axis as reference instead of the average axis

. Command-line reference 49

GROMACS Documentation, Release 2020.7

3.6.8 gmx check
Synopsis

-f [<.xtc/.trr/...>]]1 [-£f2 [<.xtc/.trr/...>]] [=-sl [<.tpr>]]
-s2 [<.tpr>]] [-ec [<.tpr/.gro/...>]] [—-e [<.edr>]]

gmx check [
[
[-e2 [<.edr>]] [-n [<.ndx>]] [-m [<.tex>]] [-vdwfac <real>]
[
[

-bonlo <real>] [-bonhi <real>] [—-[no]lrmsd] [-tol <real>]
—abstol <real>] [-[no]lab] [-lastener <string>]

Description
gmx check reads a trajectory (.rng (page 430), .trr (page 432) or .xtc (page 433)), an energy file
(.edr (page 423)) or an index file (.ndx (page 427)) and prints out useful information about them.

Option —c checks for presence of coordinates, velocities and box in the file, for close contacts (smaller
than —vdwfac and not bonded, i.e. not between —bonlo and -bonhi, all relative to the sum of
both Van der Waals radii) and atoms outside the box (these may occur often and are no problem). If
velocities are present, an estimated temperature will be calculated from them.

If an index file, is given its contents will be summarized.

If both a trajectory and a .7pr (page 432) file are given (with —s1) the program will check whether
the bond lengths defined in the tpr file are indeed correct in the trajectory. If not you may have non-
matching files due to e.g. deshuffling or due to problems with virtual sites. With these flags, gmx
check provides a quick check for such problems.

The program can compare two run input (.zpr (page 432)) files when both —s1 and —s2 are supplied.
When comparing run input files this way, the default relative tolerance is reduced to 0.000001 and
the absolute tolerance set to zero to find any differences not due to minor compiler optimization
differences, although you can of course still set any other tolerances through the options. Similarly
a pair of trajectory files can be compared (using the —£2 option), or a pair of energy files (using the
—e2 option).

For free energy simulations the A and B state topology from one run input file can be compared with
options —s1 and —ab.

Options

Options to specify input files:

—f [<.xte/.trr/...>] (traj.xtc) (Optional) Trajectory: xzc (page 433) trr (page 432) cpt (page 422)
gro (page 424) g96 (page 424) pdb (page 428) tng (page 430)

—£2 [<.xte/.trr/. .. >] (traj.xte) (Optional) Trajectory: xtc (page 433) trr (page 432) cpt (page 422)
gro (page 424) g96 (page 424) pdb (page 428) tng (page 430)

-s1 [<.tpr>] (topl.tpr) (Optional) Portable xdr run input file
—-s2 [<.tpr>] (top2.tpr) (Optional) Portable xdr run input file

—c [<.tpr/.gro/...>] (topol.tpr) (Optional) Structure+mass(db): 7pr (page 432) gro (page 424) g96
(page 424) pdb (page 428) brk ent

—e [<.edr>] (ener.edr) (Optional) Energy file
—e2 [<.edr>] (ener2.edr) (Optional) Energy file
—-n [<.ndx>] (index.ndx) (Optional) Index file
Options to specify output files:

-m [<.tex>] (doc.tex) (Optional) LaTeX file

. Command-line reference 50

GROMACS Documentation, Release 2020.7

Other options:

—vdwfac <real> (0.8) Fraction of sum of VAW radii used as warning cutoff

-bonlo <real> (0.4) Min. fract. of sum of VAW radii for bonded atoms

—bonhi <real> (0.7) Max. fract. of sum of VAW radii for bonded atoms

—[no] rmsd (no) Print RMSD for x, v and

—tol <real> (0.001) Relative tolerance for comparing real values defined as 2*(a-b)/(lal+Ibl)
—abstol <real> (0.001) Absolute tolerance, useful when sums are close to zero.
—[no]ab (no) Compare the A and B topology from one file

—lastener <string> Last energy term to compare (if not given all are tested). It makes sense to
go up until the Pressure.

3.6.9 gmx chi

Synopsis

gnx chi [=-s [<.gro/.g96/...>]]1 [-f [<.xtc/.trr/...>]] [-ss [<.dat>]]
[-o [<.xvg>]] [-p [<.pdb>]] [-jc [<.xvg>]] [—-corr [<.xvg>]]
[-g [<.1log>]] [-ot [<.xvg>]] [-oh [<.xvg>]] [-rt [<.xvg>]]
[—cp [<.xvg>]] [-b <time>] [—-e <time>] [-dt <time>] [—[no]w]
[-xvg <enum>] [-r0 <int>] [-[no]lphi] [-[nolpsi] [-[no]omega]
[-[no]lrama] [-[no]viol] [-[no]periodic] [-[no]all] [-[no]rad]
[-[no]lshift] [—binwidth <int>] [—core_rotamer <real>]
[-maxchi <enum>] [—[no]lnormhisto] [-[no]ramomegal]
[-bfact <real>] [—[no]chi_prod] [-[no]BHChi] [-bmax <real>]
[-acflen <int>] [-[no]lnormalize] [-P <enum>] [—-fitfn <enum>]
[-beginfit <real>] [-endfit <real>]

Description

gmx chi computes phi, psi, omega, and chi dihedrals for all your amino acid backbone and
sidechains. It can compute dihedral angle as a function of time, and as histogram distributions. The
distributions (histo- (dihedral) (RESIDUE) .xvg) are cumulative over all residues of each

type.

If option —corr is given, the program will calculate dihedral autocorrelation functions. The function
used is C(t) = <cos(chi(tau)) cos(chi(tau+t))>. The use of cosines rather than angles themselves, re-
solves the problem of periodicity. (Van der Spoel & Berendsen (1997), Biophys. J. 72, 2032-2041).
Separate files for each dihedral of each residue (corr (dihedral) (RESIDUE) (nresnr) .
xvQ) are output, as well as a file containing the information for all residues (argument of —corr).

With option —a 11, the angles themselves as a function of time for each residue are printed to separate
files (dihedral) (RESIDUE) (nresnr) .xvg. These can be in radians or degrees.

A log file (argument —qg) is also written. This contains
* information about the number of residues of each type.
* The NMR 3] coupling constants from the Karplus equation.

* atable for each residue of the number of transitions between rotamers per nanosecond, and the
order parameter S*2 of each dihedral.

* atable for each residue of the rotamer occupancy.

3.6. Command-line reference 51

GROMACS Documentation, Release 2020.7

All rotamers are taken as 3-fold, except for omega and chi dihedrals to planar groups (i.e. chi_2 of
aromatics, Asp and Asn; chi_3 of Glu and Gln; and chi_4 of Arg), which are 2-fold. “rotamer 0”
means that the dihedral was not in the core region of each rotamer. The width of the core region can
be set with —core_rotamer

The S”2 order parameters are also output to an .xvg (page 435) file (argument —o) and optionally as
a .pdb (page 428) file with the S*2 values as B-factor (argument —p). The total number of rotamer
transitions per timestep (argument —ot), the number of transitions per rotamer (argument —rt), and
the ~3J couplings (argument —jc), can also be written to .xvg (page 435) files. Note that the analysis
of rotamer transitions assumes that the supplied trajectory frames are equally spaced in time.

If —chi_prod is set (and —maxchi > 0), cumulative rotamers, e.g. 1+9(chi_I-1)+3(chi_-
2-1)+ (chi_3-1) (if the residue has three 3-fold dihedrals and -maxchi >= 3) are calcu-
lated. = As before, if any dihedral is not in the core region, the rotamer is taken to be
0. The occupancies of these cumulative rotamers (starting with rotamer) are written to
the file that is the argument of —-cp, and if the —all flag is given, the rotamers as func-
tions of time are written to chiproduct (RESIDUE) (nresnr) .xvg and their occupancies to
histo-chiproduct (RESIDUE) (nresnr) .xvd.

The option —r generates a contour plot of the average omega angle as a function of the phi and psi
angles, that is, in a Ramachandran plot the average omega angle is plotted using color coding.

Options

Options to specify input files:

-s [<.gro/.g96/...>] (conf.gro) Structure file: gro (page 424) g96 (page 424) pdb (page 428) brk
ent esp pr (page 432)

—f [<.xte/.trr/...>] (traj.xtc) Trajectory: xtc (page 433) trr (page 432) cpt (page 422) gro
(page 424) g96 (page 424) pdb (page 428) tng (page 430)

-ss [<.dat>] (ssdump.dat) (Optional) Generic data file

Options to specify output files:

—o [<.xvg>] (order.xvg) xvgr/xmgr file

—-p [<.pdb>] (order.pdb) (Optional) Protein data bank file

—-je [<.xvg>] (Jeoupling.xvg) xvgr/xmgr file

—corr [<.xvg>] (dihcorr.xvg) (Optional) xvgr/xmgr file

—g [<.log>] (chi.log) Log file

—ot [<.xvg>] (dihtrans.xvg) (Optional) xvgr/xmgr file

—oh [<.xvg>] (trhisto.xvg) (Optional) xvgr/xmgr file

—rt [<.xvg>] (restrans.xvg) (Optional) xvgr/xmgr file

—cp [<.xvg>] (chiprodhisto.xvg) (Optional) xvgr/xmgr file

Other options:

-b <time> (0) Time of first frame to read from trajectory (default unit ps)
—e <time> (0) Time of last frame to read from trajectory (default unit ps)
—dt <time> (0) Only use frame when t MOD dt = first time (default unit ps)

—[no]lw (no) View output .xvg (page 435), .xpm (page 433), .eps (page 423) and .pdb (page 428)
files

—xvg <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none

—-r0 <int> (1) starting residue

. Command-line reference 52

GROMACS Documentation, Release 2020.7

—[no]phi (no) Output for phi dihedral angles

—[no]psi (no) Output for psi dihedral angles

—[no]omega (no) Output for omega dihedrals (peptide bonds)

—[no]rama (no) Generate phi/psi and chi_1/chi_2 Ramachandran plots
—[no]viol (no) Write a file that gives 0 or 1 for violated Ramachandran angles
—[no]lperiodic (yes) Print dihedral angles modulo 360 degrees

—[nolall (no) Output separate files for every dihedral.

—[no]rad (no) in angle vs time files, use radians rather than degrees.
—[no]shift (no) Compute chemical shifts from phi/psi angles

-binwidth <int> (1) bin width for histograms (degrees)

—core_rotamer <real> (0.5) only the central —~core_rotamer*(360/multiplicity) belongs to
each rotamer (the rest is assigned to rotamer 0)

-maxchi <enum> (0) calculate first ndih chi dihedrals: 0, 1, 2, 3,4, 5,6
—[no]normhisto (yes) Normalize histograms

—[no] ramomega (no) compute average omega as a function of phi/psi and plot it in an .xpm
(page 433) plot

-bfact <real> (-1) B-factor value for .pdb (page 428) file for atoms with no calculated dihedral
order parameter

—[no]chi_prod (no) compute a single cumulative rotamer for each residue
—[no]HChi (no) Include dihedrals to sidechain hydrogens

—bmax <real> (0) Maximum B-factor on any of the atoms that make up a dihedral, for the dihedral
angle to be considere in the statistics. Applies to database work where a number of X-Ray
structures is analyzed. ~bmax <= 0 means no limit.

—acflen <int> (-1) Length of the ACF, default is half the number of frames
—[no]lnormalize (yes) Normalize ACF

—P <enum> (0) Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3
—fitfn <enum> (none) Fit function: none, exp, aexp, exp_exp, exps, exp7, exp9
-beginfit <real> (0) Time where to begin the exponential fit of the correlation function

—endfit <real> (-1) Time where to end the exponential fit of the correlation function, -1 is until
the end

Known Issues
¢ Produces MANY output files (up to about 4 times the number of residues in the protein, twice
that if autocorrelation functions are calculated). Typically several hundred files are output.

* phi and psi dihedrals are calculated in a non-standard way, using H-N-CA-C for phi instead
of C(-)-N-CA-C, and N-CA-C-O for psi instead of N-CA-C-N(+). This causes (usually small)
discrepancies with the output of other tools like gmx rama (page 134).

e —r0 option does not work properly

* Rotamers with multiplicity 2 are printed in chi . log as if they had multiplicity 3, with the 3rd
(g(+)) always having probability 0

3.6. Command-line reference 53

GROMACS Documentation, Release 2020.7

3.6.10 gmx cluster
Synopsis

gmx cluster [-f [<.xtc/.trr/...>]] [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[—dm [<.xpm>]] [-om [<.xpm>]] [-o [<.xpm>]] [-g [<.log>]]
[-dist [<.xvg>]] [—-ev [<.xvg>]] [-conv [<.xvg>]]

[-sz [<.xvg>]] [-tr [<.xpm>]] [-ntr [<.xvg>]]

[-clid [<.xvg>]] [-ecl [<.xtc/.trr/...>]]

[-elndx [<. ndX>]] [-b <time>] [—-e <time>] [-dt <time>]
[-tu <enum>] [-[no]lw] [—-xvg <enum>] [—-[no]dista]
[-nlevels <1nt>] [-cutoff <real>] [-[no]fit]

[-max <real>] [—-skip <int>] [-[nolav] [-wecl <int>]

[-nst <int>] [-rmsmin <real>] [-method <enum>]
[-minstruct <int>] [—-[nolbinary] [-M <int>] [-P <int>]
[-seed <int>] [-niter <int>] [-nrandom <int>]

[-kT <real>] [-[no]pbc]

Description

gmx cluster can cluster structures using several different methods. Distances between structures
can be determined from a trajectory or read from an .xpm (page 433) matrix file with the —dm option.
RMS deviation after fitting or RMS deviation of atom-pair distances can be used to define the distance
between structures.

single linkage: add a structure to a cluster when its distance to any element of the cluster is less than
cutoff.

Jarvis Patrick: add a structure to a cluster when this structure and a structure in the cluster have each
other as neighbors and they have a least P neighbors in common. The neighbors of a structure are the
M closest structures or all structures within cutoff.

Monte Carlo: reorder the RMSD matrix using Monte Carlo such that the order of the frames is using
the smallest possible increments. With this it is possible to make a smooth animation going from one
structure to another with the largest possible (e.g.) RMSD between them, however the intermediate
steps should be as small as possible. Applications could be to visualize a potential of mean force
ensemble of simulations or a pulling simulation. Obviously the user has to prepare the trajectory well
(e.g. by not superimposing frames). The final result can be inspect visually by looking at the matrix
.xpm (page 433) file, which should vary smoothly from bottom to top.

diagonalization: diagonalize the RMSD matrix.

gromos: use algorithm as described in Daura et al. (Angew. Chem. Int. Ed. 1999, 38, pp 236-240).
Count number of neighbors using cut-off, take structure with largest number of neighbors with all
its neighbors as cluster and eliminate it from the pool of clusters. Repeat for remaining structures in
pool.

When the clustering algorithm assigns each structure to exactly one cluster (single linkage, Jarvis
Patrick and gromos) and a trajectory file is supplied, the structure with the smallest average distance
to the others or the average structure or all structures for each cluster will be written to a trajectory
file. When writing all structures, separate numbered files are made for each cluster.

Two output files are always written:

e —o writes the RMSD values in the upper left half of the matrix and a graphical depiction of the
clusters in the lower right half When -minstruct =1 the graphical depiction is black when
two structures are in the same cluster. When -minstruct > 1 different colors will be used for
each cluster.

* —g writes information on the options used and a detailed list of all clusters and their members.

Additionally, a number of optional output files can be written:

3.6. Command-line reference 54

GROMACS Documentation, Release 2020.7

e —dist writes the RMSD distribution.

* —ev writes the eigenvectors of the RMSD matrix diagonalization.

* —sz writes the cluster sizes.

e —tr writes a matrix of the number transitions between cluster pairs.
e —ntr writes the total number of transitions to or from each cluster.
e —clid writes the cluster number as a function of time.

e —clndx writes the frame numbers corresponding to the clusters to the specified index file to be
read into trjconv.

e —c1 writes average (with option —av) or central structure of each cluster or writes numbered
files with cluster members for a selected set of clusters (with option —wc1, depends on —nst
and —rmsmin). The center of a cluster is the structure with the smallest average RMSD from
all other structures of the cluster.

Options

Options to specify input files:

—f [<.xte/.trr/...>] (traj.xtc) (Optional) Trajectory: xzc (page 433) trr (page 432) cpt (page 422)
gro (page 424) g96 (page 424) pdb (page 428) tng (page 430)

-s [<.tpr/.gro/...>] (topol.tpr) Structure+mass(db): pr (page 432) gro (page 424) g96 (page 424)
pdb (page 428) brk ent

—-n [<.ndx>] (index.ndx) (Optional) Index file

—dm [<.xpm>] (rmsd.xpm) (Optional) X PixMap compatible matrix file
Options to specify output files:

—om [<.xpm>] (rmsd-raw.xpm) X PixMap compatible matrix file

—o [<.xpm>] (rmsd-clust.xpm) X PixMap compatible matrix file

—g [<.log>] (cluster.log) Log file

—dist [<.xvg>] (rmsd-dist.xvg) (Optional) xvgr/xmgr file

—ev [<.xvg>] (rmsd-eig.xvg) (Optional) xvgr/xmgr file

—conv [<.xvg>] (mc-conv.xvg) (Optional) xvgr/xmgr file

-sz [<.xvg>] (clust-size.xvg) (Optional) xvgr/xmgr file

—tr [<.xpm>] (clust-trans.xpm) (Optional) X PixMap compatible matrix file
-ntr [<.xvg>] (clust-trans.xvg) (Optional) xvgr/xmgr file

—clid [<.xvg>] (clust-id.xvg) (Optional) xvgr/xmgr file

—cl [<.xtc/.trr/...>] (clusters.pdb) (Optional) Trajectory: xtc (page 433) trr (page 432) cpt
(page 422) gro (page 424) g96 (page 424) pdb (page 428) tng (page 430)

—clndx [<.ndx>] (clusters.ndx) (Optional) Index file

Other options:

-b <time> (0) Time of first frame to read from trajectory (default unit ps)
—e <time> (0) Time of last frame to read from trajectory (default unit ps)
—dt <time> (0) Only use frame when t MOD dt = first time (default unit ps)

—tu <enum> (ps) Unit for time values: fs, ps, ns, us, ms, s

3.6.

Command-line reference 55

GROMACS Documentation, Release 2020.7

—[no]w (no) View output .xvg (page 435), .xpm (page 433), .eps (page 423) and .pdb (page 428)
files

—-xvg <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none

—[noldista (no) Use RMSD of distances instead of RMS deviation

—nlevels <int> (40) Discretize RMSD matrix in this number of levels

—cutoff <real> (0.1) RMSD cut-off (nm) for two structures to be neighbor

—[no] £it (yes) Use least squares fitting before RMSD calculation

—max <real> (-1) Maximum level in RMSD matrix

—skip <int> (1) Only analyze every nr-th frame

—[no]av (no) Write average instead of middle structure for each cluster

—wel <int> (0) Write the structures for this number of clusters to numbered files

—nst <int> (1) Only write all structures if more than this number of structures per cluster
—rmsmin <real> (0) minimum rms difference with rest of cluster for writing structures

-method <enum> (linkage) Method for cluster determination: linkage, jarvis-patrick, monte-
carlo, diagonalization, gromos

—-minstruct <int> (1) Minimum number of structures in cluster for coloring in the .xpm
(page 433) file

—[nolbinary (no) Treat the RMSD matrix as consisting of 0 and 1, where the cut-off is given by
—cutoff

—M <int> (10) Number of nearest neighbors considered for Jarvis-Patrick algorithm, O is use cutoff
-P <int> (3) Number of identical nearest neighbors required to form a cluster

—seed <int> (0) Random number seed for Monte Carlo clustering algorithm (0 means generate)
—-niter <int> (10000) Number of iterations for MC

—nrandom <int> (0) The first iterations for MC may be done complete random, to shuffle the
frames

—kT <real> (0.001) Boltzmann weighting factor for Monte Carlo optimization (zero turns off uphill
steps)

—[no]pbc (yes) PBC check

3.6.11 gmx clustsize

Synopsis
gmx clustsize [-f [<.xtc/.trr/...>]] [=-s [<.tpr>]] [-n [<.ndx>]]
[0 [<.xpm>]] [—-ow [<.xpm>]] [-nc [<.xvg>]]
[-mc [<.xvg>]] [=ac [<.xvg>]] [-he [<.xvg>]]
[-temp [<.xvg>]] [-mcn [<.ndx>]] [-b <time>] [—-e <time>]
[-dt <time>] [-tu <enum>] [-[nolw] [—-xvg <enum>]
[-cut <real>] [—-[no]mol] [-[no]lpbc] [—-nskip <int>]
[-nlevels <int>] [-ndf <int>] [-rgblo <vector>]
[

—-rgbhi <vector>]

3.6. Command-line reference 56

GROMACS Documentation, Release 2020.7

Description

gmx clustsize computes the size distributions of molecular/atomic clusters in the gas phase. The
output is given in the form of an .xpm (page 433) file. The total number of clusters is written to an
.xvg (page 435) file.

When the —mo1l option is given clusters will be made out of molecules rather than atoms, which
allows clustering of large molecules. In this case an index file would still contain atom numbers or
your calculation will die with a SEGV.

When velocities are present in your trajectory, the temperature of the largest cluster will be printed in a
separate .xvg (page 435) file assuming that the particles are free to move. If you are using constraints,
please correct the temperature. For instance water simulated with SHAKE or SETTLE will yield a
temperature that is 1.5 times too low. You can compensate for this with the —ndf option. Remember
to take the removal of center of mass motion into account.

The —mc option will produce an index file containing the atom numbers of the largest cluster.

Options

Options to specify input files:

—f [<.xte/.trr/...>] (traj.xtc) Trajectory: xfc (page 433) trr (page 432) cpt (page 422) gro
(page 424) g96 (page 424) pdb (page 428) tng (page 430)

-s [<.tpr>] (topol.tpr) (Optional) Portable xdr run input file

-n [<.ndx>] (index.ndx) (Optional) Index file

Options to specify output files:

—-o [<.xpm>] (csize.xpm) X PixMap compatible matrix file

—ow [<.xpm>] (csizew.xpm) X PixMap compatible matrix file

—-nc [<.xvg>] (nclust.xvg) xvgr/xmgr file

—-mc [<.xvg>] (maxclust.xvg) xvgr/xmgr file

—ac [<.xvg>] (avclust.xvg) xvgr/xmgr file

—hc [<.xvg>] (histo-clust.xvg) xvgr/xmgr file

—temp [<.xvg>] (temp.xvg) (Optional) xvgr/xmgr file

—-mecn [<.ndx>] (maxclust.ndx) (Optional) Index file

Other options:

-b <time> (0) Time of first frame to read from trajectory (default unit ps)
—e <time> (0) Time of last frame to read from trajectory (default unit ps)
—dt <time> (0) Only use frame when t MOD dt = first time (default unit ps)
—tu <enum> (ps) Unit for time values: fs, ps, ns, us, ms, s

—[no]w (no) View output .xvg (page 435), .xpm (page 433), .eps (page 423) and .pdb (page 428)
files

—-xvg <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none

—cut <real> (0.35) Largest distance (nm) to be considered in a cluster
—[no]mol (no) Cluster molecules rather than atoms (needs ./pr (page 432) file)
—[no]pbc (yes) Use periodic boundary conditions

-nskip <int> (0) Number of frames to skip between writing

—-nlevels <int> (20) Number of levels of grey in .xpm (page 433) output

3.6.

Command-line reference 57

GROMACS Documentation, Release 2020.7

—ndf <int> (-1) Number of degrees of freedom of the entire system for temperature calculation. If
not set, the number of atoms times three is used.

—rgblo <vector> (1 1 0) RGB values for the color of the lowest occupied cluster size

—rgbhi <vector> (0 0 1) RGB values for the color of the highest occupied cluster size

3.6.12 gmx confrms
Synopsis

-fl [<.tpr/.gro/...>]]1 [-£2 [<.gro/.g96/...>]]

gmx confrms [
[-nl [<.ndx>]] [-n2 [<.ndx>]] [-o0 [<.gro/.g96/...>]]
[
[

-no [<.ndx>]] [-[no]lw] [-[no]one] [—-[no]mw] [-[no]pbc]
—[no]fit] [-[no]lname] [-[no]label] [-[no]lbfac]

Description

gmx confrms computes the root mean square deviation (RMSD) of two structures after least-
squares fitting the second structure on the first one. The two structures do NOT need to have the
same number of atoms, only the two index groups used for the fit need to be identical. With —name
only matching atom names from the selected groups will be used for the fit and RMSD calculation.
This can be useful when comparing mutants of a protein.

The superimposed structures are written to file. In a .pdb (page 428) file the two structures will
be written as separate models (use rasmol -nmrpdb). Also in a .pdb (page 428) file, B-factors
calculated from the atomic MSD values can be written with -bfac.

Options

Options to specify input files:

—-£1 [<.tpr/.gro/...>] (confl.gro) Structure+mass(db): rpr (page 432) gro (page 424) g96
(page 424) pdb (page 428) brk ent

—-£2 [<.gro/.g96/...>] (conf2.gro) Structure file: gro (page 424) g96 (page 424) pdb (page 428) brk
ent esp 1pr (page 432)

-nl [<.ndx>] (fitl.ndx) (Optional) Index file
-n2 [<.ndx>] (fit2.ndx) (Optional) Index file
Options to specify output files:

-o [<.gro/.g96/...>] (fit.pdb) Structure file: gro (page 424) g96 (page 424) pdb (page 428) brk ent
esp

—no [<.ndx>] (match.ndx) (Optional) Index file
Other options:

—[no]w (no) View output .xvg (page 435), .xpm (page 433), .eps (page 423) and .pdb (page 428)
files

—[no]one (no) Only write the fitted structure to file

—[no]mw (yes) Mass-weighted fitting and RMSD

—[no]pbc (no) Try to make molecules whole again

—[no] £it (yes) Do least squares superposition of the target structure to the reference
—[no]name (no) Only compare matching atom names

—[no]label (no) Added chain labels A for first and B for second structure

3.6.

Command-line reference 58

GROMACS Documentation, Release 2020.7

—[no]bfac (no) Output B-factors from atomic MSD values

3.6.13 gmx convert-tpr

Synopsis

gmnx convert-tpr [-s [<.tpr>]] [-n [<.ndx>]] [-o [<.tpr>]]
[-extend <real>] [—-until <real>] [-nsteps <int>]
[-[no] zeroq]

Description

gmx convert—tpr can edit run input files in three ways.

1. by modifying the number of steps in a run input file with options —~extend, —until or -nsteps

(nsteps=-1 means unlimited number of steps)

2. by creating a .tpx file for a subset of your original tpx file, which is useful when you want to remove
the solvent from your .tpx file, or when you want to make e.g. a pure Calpha .tpx file. Note that you
may need to use —-nsteps -1 (or similar) to get this to work. WARNING: this .tpx file is not fully

functional.

3. by setting the charges of a specified group to zero. This is useful when doing free energy estimates

using the LIE (Linear Interaction Energy) method.

Options

Options to specify input files:

—s [<.tpr>] (topol.tpr) Portable xdr run input file

-n [<.ndx>] (index.ndx) (Optional) Index file

Options to specify output files:

—o [<.tpr>] (tprout.tpr) Portable xdr run input file

Other options:

—extend <real> (0) Extend runtime by this amount (ps)
—until <real> (0) Extend runtime until this ending time (ps)
—-nsteps <int> (0) Change the number of steps

—[no] zeroq (no) Set the charges of a group (from the index) to zero

3.6.14 gmx convert-trj

Synopsis

gmx convert-trj [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-o [<.xtc/.trr/...>]] [-b <time>]
[-e <time>] [-dt <time>] [—-tu <enum>]
[-fgroup <selection>] [—-xvg <enum>] [—[no]rmpbc]
[-[nolpbec] [-sf <file>] [—-selrpos <enum>]
[-select <selection>] [-vel <enum>] [—-force <enum>]
[-atoms <enum>] [—precision <int>] [-starttime <time>]
[-timestep <time>] [-box <vector>]

3.6. Command-line reference

59

GROMACS Documentation, Release 2020.7

Description
gmx convert—trj converts trajectory files between different formats. The module supports writ-
ing all GROMACS supported file formats from the supported input formats.

Included is also a selection of possible options to modify individual trajectory frames, including
options to produce slimmer output files. It is also possible to replace the particle information stored
in the input trajectory with those from a structure file

The module can also generate subsets of trajectories based on user supplied selections.

Options

Options to specify input files:

—f [<.xte/.trr/...>] (traj.xtc) (Optional) Input trajectory or single configuration: xzc (page 433) trr
(page 432) cpt (page 422) gro (page 424) g96 (page 424) pdb (page 428) tng (page 430)

-s [<.tpr/.gro/...>] (topol.tpr) (Optional) Input structure: ipr (page 432) gro (page 424) g96
(page 424) pdb (page 428) brk ent

-n [<.ndx>] (index.ndx) (Optional) Extra index groups
Options to specify output files:

—o [<.xte/.trr/...>] (trajout.xtc) Output trajectory: xzc (page 433) trr (page 432) cpt (page 422) gro
(page 424) g96 (page 424) pdb (page 428) tng (page 430)

Other options:

-b <time> (0) First frame (ps) to read from trajectory

—e <time> (0) Last frame (ps) to read from trajectory

—dt <time> (0) Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps) Unit for time values: fs, ps, ns, us, ms, s

—fgroup <selection> Atoms stored in the trajectory file (if not set, assume first N atoms)
—-xvg <enum> (xmgrace) Plot formatting: none, xmgrace, xmgr

—[no] rmpbc (yes) Make molecules whole for each frame

—[no]pbc (yes) Use periodic boundary conditions for distance calculation

—sf <file> Provide selections from files

—-selrpos <enum> (atom) Selection reference positions: atom, res_com, res_cog, mol_com,
mol_cog, whole_res_com, whole_res_cog, whole_mol_com, whole_mol_cog, part_res_com,
part_res_cog, part_mol_com, part_mol_cog, dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_-
mol_cog

—-select <selection> Selection of particles to write to the file

—vel <enum> (preserved-if-present) Save velocities from frame if possible: preserved-if-present,
always, never

—force <enum> (preserved-if-present) Save forces from frame if possible: preserved-if-present,
always, never

—atoms <enum> (preserved-if-present) Decide on providing new atom information from topol-
ogy or using current frame atom information: preserved-if-present, always-from-structure,
never, always

—precision <int> (3) Set output precision to custom value
—-starttime <time> (0) Change start time for first frame

—timestep <time> (0) Change time between different frames

3.6.

Command-line reference

60

GROMACS Documentation, Release 2020.7

—box <vector> New diagonal box vector for output frame

3.6.15 gmx covar
Synopsis

gmx covar [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[0 [<.xvg>]] [-v [<.trr/.cpt/...>]]

[rav [<.gro/.g96/...>]]1 [-1 [<.log>]] [-ascii [<.dat>]]
[-xpm [<.xpm>]] [—xpma [<.xpm>]] [-b <time>] [—-e <time>]
[-dt <time>] [—-tu <enum>] [-xvg <enum>] [—[no]fit]
[-[no]lref] [-[no]lmwa] [-last <int>] [-[no]pbc]

Description

gmx covar calculates and diagonalizes the (mass-weighted) covariance matrix. All structures are
fitted to the structure in the structure file. When this is not a run input file periodicity will not be taken
into account. When the fit and analysis groups are identical and the analysis is non mass-weighted,
the fit will also be non mass-weighted.

The eigenvectors are written to a trajectory file (—v). When the same atoms are used for the fit and
the covariance analysis, the reference structure for the fit is written first with t=-1. The average (or
reference when —ref is used) structure is written with t=0, the eigenvectors are written as frames
with the eigenvector number and eigenvalue as step number and timestamp, respectively.

The eigenvectors can be analyzed with gmx anaeig (page 39).

Option —ascii writes the whole covariance matrix to an ASCII file. The order of the elements is:
x1x1, x1yl, x1z1, x1x2, ...

Option —xpm writes the whole covariance matrix to an .xpm (page 433) file.

Option —xpma writes the atomic covariance matrix to an .xpm (page 433) file, i.e. for each atom pair
the sum of the xx, yy and zz covariances is written.

Note that the diagonalization of a matrix requires memory and time that will increase at least as fast
as than the square of the number of atoms involved. It is easy to run out of memory, in which case this
tool will probably exit with a ‘Segmentation fault’. You should consider carefully whether a reduced
set of atoms will meet your needs for lower costs.

Options

Options to specify input files:

—f [<.xte/.trr/...>] (traj.xtc) Trajectory: xtc (page 433) trr (page 432) cpt (page 422) gro
(page 424) g96 (page 424) pdb (page 428) tng (page 430)

-s [<.tpr/.gro/...>] (topol.tpr) Structure+mass(db): 7pr (page 432) gro (page 424) g96 (page 424)
pdb (page 428) brk ent

-n [<.ndx>] (index.ndx) (Optional) Index file
Options to specify output files:
—o [<.xvg>] (eigenval.xvg) xvgr/xmgr file

=v [<.trr/.cpt/...>] (eigenvec.trr) Full precision trajectory: frr (page 432) cpt (page 422) tng
(page 430)

—av [<.gro/.g96/...>] (average.pdb) Structure file: gro (page 424) g96 (page 424) pdb (page 428)
brk ent esp

-1 [<.]og>] (covar.log) Log file

3.6. Command-line reference

61

GROMACS Documentation, Release 2020.7

—ascii [<.dat>] (covar.dat) (Optional) Generic data file

—xpm [<.xpm>] (covar.xpm) (Optional) X PixMap compatible matrix file
—xpma [<.xpm>] (covara.xpm) (Optional) X PixMap compatible matrix file
Other options:

-b <time> (0) Time of first frame to read from trajectory (default unit ps)

—e <time> (0) Time of last frame to read from trajectory (default unit ps)
—dt <time> (0) Only use frame when t MOD dt = first time (default unit ps)
—tu <enum> (ps) Unit for time values: fs, ps, ns, us, ms, s

—-xvg <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none

—[no] £it (yes) Fit to a reference structure

—[no]ref (no) Use the deviation from the conformation in the structure file instead of from the
average

- [no]mwa (no) Mass-weighted covariance analysis
—-last <int> (-1) Last eigenvector to write away (-1 is till the last)

—[no]pbc (yes) Apply corrections for periodic boundary conditions

3.6.16 gmx current
Synopsis

gmx current [
[-o [<.xvg>]] [-caf [<.xvg>]] [-dsp [<.xvg>]]
[-md [<.xvg>]] [-mj [<.xvg>]] [-mc [<.xvg>]] [-b <time>]
[—e <time>] [-dt <time>] [-[nolw] [—-xvg <enum>]
[-sh <int>] [—-[no]lnojump] [—-eps <real>] [-bfit <real>]
[—efit <real>] [-bvit <real>] [—evit <real>]
[-temp <real>]

Description

gmx current is a tool for calculating the current autocorrelation function, the correlation of the
rotational and translational dipole moment of the system, and the resulting static dielectric constant.
To obtain a reasonable result, the index group has to be neutral. Furthermore, the routine is capable
of extracting the static conductivity from the current autocorrelation function, if velocities are given.
Additionally, an Einstein-Helfand fit can be used to obtain the static conductivity.

The flag —caf is for the output of the current autocorrelation function and —mc writes the correlation
of the rotational and translational part of the dipole moment in the corresponding file. However, this
option is only available for trajectories containing velocities. Options —sh and —tr are responsi-
ble for the averaging and integration of the autocorrelation functions. Since averaging proceeds by
shifting the starting point through the trajectory, the shift can be modified with —sh to enable the
choice of uncorrelated starting points. Towards the end, statistical inaccuracy grows and integrating
the correlation function only yields reliable values until a certain point, depending on the number of
frames. The option —t r controls the region of the integral taken into account for calculating the static
dielectric constant.

Option —temp sets the temperature required for the computation of the static dielectric constant.

Option —eps controls the dielectric constant of the surrounding medium for simulations using a Re-
action Field or dipole corrections of the Ewald summation (—eps=0 corresponds to tin-foil boundary
conditions).

-s [<.tpr/.gro/...>]] [-n [<.ndx>]] [-f [<.xtc/.trr/...>]]

3.6.

Command-line reference

62

GROMACS Documentation, Release 2020.7

- [no]nojump unfolds the coordinates to allow free diffusion. This is required to get a continuous
translational dipole moment, required for the Einstein-Helfand fit. The results from the fit allow the
determination of the dielectric constant for system of charged molecules. However, it is also possible
to extract the dielectric constant from the fluctuations of the total dipole moment in folded coordinates.
But this option has to be used with care, since only very short time spans fulfill the approximation that
the density of the molecules is approximately constant and the averages are already converged. To
be on the safe side, the dielectric constant should be calculated with the help of the Einstein-Helfand
method for the translational part of the dielectric constant.

Options

Options to specify input files:

-s [<.tpr/.gro/...>] (topol.tpr) Structure+mass(db): 1pr (page 432) gro (page 424) g96 (page 424)
pdb (page 428) brk ent

—-n [<.ndx>] (index.ndx) (Optional) Index file

—f [<.xte/.trr/...>] (traj.xtc) Trajectory: xtc (page 433) trr (page 432) cpt (page 422) gro
(page 424) g96 (page 424) pdb (page 428) tng (page 430)

Options to specify output files:

—o [<.xvg>] (current.xvg) xvgr/xmgr file

—caf [<.xvg>] (caf.xvg) (Optional) xvgr/xmgr file

—dsp [<.xvg>] (dsp.xvg) xvgr/xmgr file

-md [<.xvg>] (md.xvg) xver/xmgr file

-mj [<.xvg>] (mj.xvg) xvgr/xmgr file

-mc [<.xvg>] (mc.xvg) (Optional) xvgr/xmgr file

Other options:

-b <time> (0) Time of first frame to read from trajectory (default unit ps)
—e <time> (0) Time of last frame to read from trajectory (default unit ps)
—dt <time> (0) Only use frame when t MOD dt = first time (default unit ps)

—[no]lw (no) View output .xvg (page 435), .xpm (page 433), .eps (page 423) and .pdb (page 428)
files

—xvg <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none

—sh <int> (1000) Shift of the frames for averaging the correlation functions and the mean-square
displacement.

—[no]nojump (yes) Removes jumps of atoms across the box.

—eps <real> (0) Dielectric constant of the surrounding medium. The value zero corresponds to
infinity (tin-foil boundary conditions).

-bfit <real> (100) Begin of the fit of the straight line to the MSD of the translational fraction of
the dipole moment.

—efit <real> (400) End of the fit of the straight line to the MSD of the translational fraction of the
dipole moment.

-bvit <real> (0.5) Begin of the fit of the current autocorrelation function to a*t"b.
—evit <real> (5) End of the fit of the current autocorrelation function to a*t"b.

—temp <real> (300) Temperature for calculating epsilon.

. Command-line reference 63

GROMACS Documentation, Release 2020.7

3.6.17 gmx density

Synopsis

gnx density [-f [<.xtc/.trr/...>]]1 [-n [<.ndx>]] [-s [<.tpr>]]
[-ei [<.dat>]] [-o [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-[no]lw] [—-xvg <enum>] [-d <string>]
[-sl <int>] [-dens <enum>] [-ng <int>] [—[no]center]
[-[no]lsymm] [-[no]relative]

Description

gmx density computes partial densities across the box, using an index file.
For the total density of NPT simulations, use gmx energy (page 83) instead.

Option —center performs the histogram binning relative to the center of an arbitrary group, in
absolute box coordinates. If you are calculating profiles along the Z axis box dimension bZ, output
would be from -bZ/2 to bZ/2 if you center based on the entire system. Note that this behaviour has
changed in GROMACS 5.0; earlier versions merely performed a static binning in (0,bZ) and shifted
the output. Now we compute the center for each frame and bin in (-bZ/2,bZ/2).

Option —symm symmetrizes the output around the center. This will automatically turn on —center
too. Option —relative performs the binning in relative instead of absolute box coordinates, and
scales the final output with the average box dimension along the output axis. This can be used in
combination with —center.

Densities are in kg/m”3, and number densities or electron densities can also be calculated. For elec-
tron densities, a file describing the number of electrons for each type of atom should be provided
using —ei. It should look like:

2
atomname = nrelectrons
atomname = nrelectrons

The first line contains the number of lines to read from the file. There should be one line for each
unique atom name in your system. The number of electrons for each atom is modified by its atomic
partial charge.

IMPORTANT CONSIDERATIONS FOR BILAYERS

One of the most common usage scenarios is to calculate the density of various groups across a lipid
bilayer, typically with the z axis being the normal direction. For short simulations, small systems, and
fixed box sizes this will work fine, but for the more general case lipid bilayers can be complicated. The
first problem that while both proteins and lipids have low volume compressibility, lipids have quite
high area compressiblity. This means the shape of the box (thickness and area/lipid) will fluctuate
substantially even for a fully relaxed system. Since GROMACS places the box between the origin
and positive coordinates, this in turn means that a bilayer centered in the box will move a bit up/down
due to these fluctuations, and smear out your profile. The easiest way to fix this (if you want pressure
coupling) is to use the —center option that calculates the density profile with respect to the center of
the box. Note that you can still center on the bilayer part even if you have a complex non-symmetric
system with a bilayer and, say, membrane proteins - then our output will simply have more values on
one side of the (center) origin reference.

Even the centered calculation will lead to some smearing out the output profiles, as lipids themselves
are compressed and expanded. In most cases you probably want this (since it corresponds to macro-
scopic experiments), but if you want to look at molecular details you can use the —~relat ive option
to attempt to remove even more of the effects of volume fluctuations.

Finally, large bilayers that are not subject to a surface tension will exhibit undulatory fluctuations,
where there are ‘waves’ forming in the system. This is a fundamental property of the biological

3.6. Command-line reference 64

GROMACS Documentation, Release 2020.7

system, and if you are comparing against experiments you likely want to include the undulation
smearing effect.

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xte) Trajectory: xtc (page 433) trr (page 432) cpt (page 422) gro
(page 424) g96 (page 424) pdb (page 428) tng (page 430)

—-n [<.ndx>] (index.ndx) (Optional) Index file

—s [<.tpr>] (topol.tpr) Portable xdr run input file

—ei [<.dat>] (electrons.dat) (Optional) Generic data file

Options to specify output files:

—o [<.xvg>] (density.xvg) xvgr/xmgr file

Other options:

-b <time> (0) Time of first frame to read from trajectory (default unit ps)
—e <time> (0) Time of last frame to read from trajectory (default unit ps)
—dt <time> (0) Only use frame when t MOD dt = first time (default unit ps)

—[no]w (no) View output .xvg (page 435), .xpm (page 433), .eps (page 423) and .pdb (page 428)
files

—-xvg <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none

—d <string> (Z) Take the normal on the membrane in direction X, Y or Z.
-s1 <int> (50) Divide the box in this number of slices.