
Is it Computer Science,

Software Engineering,

or Hacking?

Dr. Bruce K. Haddon

Paladin Software International
I N C O R P O R A T E D

All trade and service marks, and logos, used in this presentation are the property of their respective owners, and are used solely to refer to those owners and their property.

Copyrighted material is shown for fair comment. Copyright on this presentation does not include such material, but does include the author’s comments and forms of expression.

PSI

The Origins of the Problem

A parser processing a Unicode
input file, with a need to build
first and follow sets (traditionally

done with bit sets);

Unicode has code points in the
range 0 ~ 221

The Java JDK has a class,
BitSet: range 0 ~ 232 - 1

A match made in heaven! ?

Copyright © 2010 Paladin Software Incorporated, Inc. 22010-04-22

PSI

Enter Reality!

To store a single bit using BitSet
at bit 232-1 takes 227 32-bit words
(226 64bit “words”), not counting
any Java object overhead.

The amount of memory available
in a 32-bit JVM in a 4 GB Windows
system is approximately 226 32-bit
words at best (not quite 227 on a
Linux system).

Oops!

Copyright © 2010 Paladin Software Incorporated, Inc. 32010-04-22

PSI

No. 1 “top of the search” return!

Tutorials & Code Camps

Help Using a HashSet for a Sparse Bit Set

by MageLang Institute

A sparse bitset is a large collection of boolean values where many
of the values are off (or false). For maintaining these sparsely
populated sets, the BitSet class can be very inefficient. Since
the majority of the bits will be off, space will be occupied to
store nothing. For working with these sparse bitsets, you can
create an alternate representation, backed instead by a
hashtable, or HashMap. Only those positions where a value is
set are then stored in the mapping.

Copyright © 2010 Paladin Software Incorporated, Inc. 42010-04-22

PSI

The Instructions

To create a sparse bitset, subclass BitSet and override the
necessary methods (everything). The skeleton code should help
get your started, so you can focus on the set-oriented routines.

The following UML diagram shows you the BitSet operations:

Skeleton Code

SparseBitSet.java

Tester.java

Tasks

Copyright © 2010 Paladin Software Incorporated, Inc. 52010-04-22

PSI

BitSet (UML)

+BitSet()

+BitSet(int : nbits)

+and(set : BitSet) : void

+andNot(set : BitSet) : void

+cardinality() : int

+clear() : void

+clear(i : int) : void

+clear(i : int, j: int) : void

+clone() : Object

+equals(obj : Object) : boolean

+flip(i : int) : void

+flip(i : int, j: int) : void

+get(i : int) : boolean

+get(i : int, j : int) : BitSet

+hashCode() : int

+intersects(set : BitSet) : boolean

+isEmpty() : boolean

+length() : int

+nextClearBit(i : int) : int

+nextSetBit(i : int) : int

+or(set : BitSet) : void

+set(i : int) : void

+set(i : int, value : boolean) : void

+set(i : int, j : int) : void

+set(i : int, j : int, value : boolean) : void

+size() : int

+toString() : String

+xor(set : BitSet) : void

Copyright © 2010 Paladin Software Incorporated, Inc. 62010-04-22

PSI

The HashSet solution

value

key

next

bitValue

PRESENT

EntryBuckets[]

Integer

ObjectHashMap

For each bit, 7 32-bit words overhead

or

For 64 bits, ~448 32-bit words overhead

2010-04-22 Copyright © 2010 Paladin Software Incorporated, Inc. 7

PSI

The HashMap solution

Copyright © 2010 Paladin Software Incorporated, Inc. 8

value

key

next

keyValue

bits

EntryBuckets[]

Integer

LongHashMap

keyValue = bitvalue / 64

bits = packed 64 bits (63 – 0)

For 64 bits, ~8 32-bit words overhead

2010-04-22

PSI

The (homegrown) Hashtable solution

Copyright © 2010 Paladin Software Incorporated, Inc. 9

bits

key

next

EntryBuckets[]

Hashtable

key is an int, = bitvalue / 64

Value is a long, packed 64 bits (63 – 0)

For 64 bits, ~4 32-bit words overhead

2010-04-22

PSI

The “Bucket by Masking” Problem

HashMap uses masking by
powers of 2 to obtain a
bucket number.

If clumping occurs, it
remains when the bucket
table is resized.

Replaced masking by
remaindering modulo the
given table of primes, for
table sizes of 2n

Every table resize returned
average list length to 1.1.

Primes <= 2n (n = 0, 25)

1, 2, 3, 7, 13, 31, 61, 127,
251, 509, 1021, 2039, 4093,
8191, 16381, 32749, 65521,
131071, 262139, 524287,
1048573, 2097143,
4194301, 8388593,
16777213, 33554393

Copyright © 2010 Paladin Software Incorporated, Inc. 102010-04-22

PSI

The Assessment and Response

JUnit tests (with timers) were built to test
every method (verified against BitSet).

The speed of operation seems good, but
this effort started with concern over
memory usage.

Other problems:

Sequential access is less than efficient: hash
computation is done to find the “next” 64-bits.

Bucket lists can be very long, and this destroys
performance.

Perhaps time for some real research into
the theory—

Copyright © 2010 Paladin Software Incorporated, Inc. 112010-04-22

PSI

The Theory

An alternative to the list is a bit vector

representation of sets. Assume the universe of

discourse U (of which all sets are subsets) has

n members. Linearly order the elements of U.

A subset S U is represented as a vector vS,

of n bits, where the ith bit in vS is 1 if and

only if the ith element of U is an element of S.

We call vS the characteristic vector of S.

The bit vector representation has the

advantage that one can determine whether the

ith element of U is an element of a set in time

independent of the size of the set. Further-

more, basic operations on sets such as union

and intersection can be carried out by the bit

vector operations and .

(page 49)

Copyright © 2010 Paladin Software Incorporated, Inc. 122010-04-22

PSI

“Virtual Memory”

After some thought, decided to try (as
an experiment) a “virtual memory”
approach

This thought pattern evolved over a
period of not touching the code, and the
process of evolution was neither science
nor engineering (otherwise, a true
“hack”).

In a “virtual memory” scenario, a table
of virtual addresses is kept, that point to
real memory if that memory is actually
needed, and do not point anywhere if
that memory is not actually in use.

Copyright © 2010 Paladin Software Incorporated, Inc. 132010-04-22

PSI

The first“virtual memory” structure

Copyright © 2010 Paladin Software Incorporated, Inc. 14

LEVEL1 6LEVEL2

long[]

long[][]

block

table

2010-04-22

PSI

The final“virtual memory” structure

Copyright © 2010 Paladin Software Incorporated, Inc. 15

LEVEL1 6LEVEL2 LEVEL3

long[]

long[][]

long[][][]

block

area

table

2010-04-22

PSI

Example: code based on “virtual memory”: flip

public void flip(int i)

{

if((i + 1) < 1)throw new IndexOutOfBoundsException("i=" + i);

final int w = i >> SHIFT3;

final int w1 = w >> SHIFT1;

final int w2 = (w >> SHIFT2) & MASK2;

if(i >= bitsLength) resize(i);

long[][] a2;

if((a2 = bits[w1]) == null)

a2 = bits[w1] = new long[LENGTH2][];

long[] a3;

if((a3 = a2[w2]) == null) a3 = a2[w2] = new long[LENGTH3];

a3[w & MASK3] ^= 1L << i; //Flip the designated bit

cache.hash = 0; // Invalidate size, etc., values

}

Copyright © 2010 Paladin Software Incorporated, Inc. 162010-04-22

PSI

Example: code based on “virtual memory”: clear

public void clear(int i)

{

/* In the interests of speed, no check is made here on whether

the level3 block goes to all zero. This may be found and

corrected in some later operation. */

if((i + 1) < 1) throw new IndexOutOfBoundsException("i=" + i);

if(i > bitsLength) return;

final int w = i >> SHIFT3;

long[][] a2;

if((a2 = bits[w >> SHIFT1]) == null) return;

long[] a3;

if((a3 = a2[(w >> SHIFT2) & MASK2]) == null) return;

a3[w & MASK3] &= ~(1L << i); // Clear the indicated bit

cache.hash = 0; // Invalidate size, etc.,

}

Copyright © 2010 Paladin Software Incorporated, Inc. 172010-04-22

PSI

Example: code based on “virtual memory”: and

for(int w1 = 0; w1 != length1; ++w1) {

if((b_level2 = b_level1[w1]) == null) level1[w1] = null;

else if((level2 = level1[w1]) != null) {

boolean level2_area_is_all_null = true; // Pre-assumption

for(int w2 = 0; w2 != LENGTH2; ++w2) {

if((b_level3 = b_level2[w2]) == null) level2[w2] = null;

else if((level3 = level2[w2]) != null) {

final int index_base = (w1 << SHIFT1) + (w2 << SHIFT2);

boolean level3_block_is_all_zero = true;

for(int w3 = 0; w3 != LENGTH3; ++w3)

if((word = (level3[w3] &= b_level3[w3])) != 0)

level3_block_is_all_zero = false;

if(level3_block_is_all_zero) level2[w2] = null;

}

if(level2[w2] != null) level2_area_is_all_null = false;

}

if(level2_area_is_all_null) level1[w1] = null;

}

}
Copyright © 2010 Paladin Software Incorporated, Inc. 182010-04-22

PSI

Real Software Engineering Research

Looking at the way blocks were allocated
and discarded, a side project was mounted
to investigate keeping of pool of blocks:

A stack where discarded blocks were placed (to
a given limit). Each discarded block had to be
guaranteed empty.

From which needed blocks were pop’ed as
needed, and if the stack ran out, new blocks
were constructed.

A program was constructed to time this
versus simple discarding with garbage
collection, and allocation upon need.

Copyright © 2010 Paladin Software Incorporated, Inc. 192010-04-22

PSI

New Allocation vs. Pooling Blocks

Copyright © 2010 Paladin Software Incorporated, Inc. 20

Count of

allocations/discards

Thread time(ms)
(2 sig. digits)

Elapsed time(ms)
(2 sig. digits)

Using

new

“pooled” Using

new

“pooled”

100,000 16 0 17 3

1,000,000 110 60 120 60

10,000,000 1000 600 1100 600

100,000,000 10000 6000 11000 6100

1,000,000,000 100000 60000 110000 60000

2010-04-22

All timings in this presentation were made on a Lenovo ThinkPad, with an
Intel Core 2 DUO CPU T9600, 2.80 GHz, with 3GB RAM, under Windows XP SP3.

PSI

Example: code based on “virtual memory”: and

for(int w1 = 0; w1 != length1; ++w1) {

if((b_level2 = b_level1[w1]) == null) level1[w1] = null;

else if((level2 = level1[w1]) != null) {

boolean level2_area_is_all_null = true; // Pre-assumption

for(int w2 = 0; w2 != LENGTH2; ++w2) {

if((b_level3 = b_level2[w2]) == null) level2[w2] = null;

else if((level3 = level2[w2]) != null) {

final int index_base = (w1 << SHIFT1) + (w2 << SHIFT2);

boolean level3_block_is_all_zero = true;

for(int w3 = 0; w3 != LENGTH3; ++w3)

if((word = (level3[w3] &= b_level3[w3])) != 0)

level3_block_is_all_zero = false;

if(level3_block_is_all_zero) level2[w2] = null;

}

if(level2[w2] != null) level2_area_is_all_null = false;

}

if(level2_area_is_all_null) level1[w1] = null;

}

}
Copyright © 2010 Paladin Software Incorporated, Inc. 212010-04-22

PSI

Hand Waving

The next part is difficult to describe.

Problem: lots of very similar, repeated code.

Try a management method for the “whole set”
problems, with flags and switches for the
various kinds of operations.

Similarly, for the “scanning set” operations.

Merge these, by treating “whole set” as
scanning from 0 to bitsLength.

Bugs galore in trying to get all the “special”
cases to work (everything is fragile).

Start to suspect that need to walk code over
the structure (Visitor Pattern?).

Copyright © 2010 Paladin Software Incorporated, Inc. 222010-04-22

PSI

Design Patterns

“Visitor” turned out to
be the wrong concept.

Strategy was the
needed pattern.

One management routine
to walk the structure,
and maintain it.

At the critical points in
the walk, invoke the
method of a Strategy to
perform the appropriate
actions.

Copyright © 2010 Paladin Software Incorporated, Inc. 232010-04-22

PSI

AbstractStrategy (UML)

#F_OP_F_EQ_F : const int

#F_OP_X_EQ_F : const int

#X_OP_F_EQ_F : const int

#X_OP_F_EQ_X : const int

#properties() : int;

#start(b : SparseBitSet) : void

#word(base : int , u3: int, a3 : long[] ,

b3 : long[] , mask : long) : boolean

#block(base : int, u3 : int, v3 : int, a3 : long[] ,

b3 : long[]) : boolean

#void finish(a2Count : int, a3Count: int)

#isZeroBlock(a3 : long[]) : boolean

The Strategies

AndStrategy

AndNotStrategy

ClearStrategy

CopyStrategy

EqualsStrategy

FlipStrategy

IntersectsStrategy

OrStrategy

SetStrategy.

UpdateStrategy

XorStrategy

Copyright © 2010 Paladin Software Incorporated, Inc. 242010-04-22

PSI

A Strategy

protected class AndStrategy extends AbstractStrategy {

protected int properties() {

return F_OP_F_EQ_F + F_OP_X_EQ_F + X_OP_F_EQ_F;

}

protected void start(SparseBitSet b) {

if(b == null) throw new NullPointerException();

cache.hash = 0;

}

protected boolean word(int base, int u3, long[] a3, long[] b3, long mask) {

return (a3[u3] &= b3[u3] | ~mask) == 0L;

}

protected boolean block(int base, int u3, int v3, long[] a3, long[] b3) {

boolean isZero = true; // Presumption

for(int w3 = u3; w3 != v3; ++w3) isZero &= ((a3[w3] &= b3[w3]) == 0L);

return isZero;

}

}

Copyright © 2010 Paladin Software Incorporated, Inc. 252010-04-22

PSI

And now the code!

public void and(SparseBitSet b)

{

nullify(Math.min(bits.length, b.bits.length)); // Optimisation

setScanner(0, Math.min(bitsLength, b.bitsLength), b, andStrategy);

}

public void andNot(int i, int j, SparseBitSet b)

throws IndexOutOfBoundsException

{

setScanner(i, j, b, andNotStrategy);

}

public void flip(int i, int j) throws IndexOutOfBoundsException

{

setScanner(i, j, null, flipStrategy);

}

Copyright © 2010 Paladin Software Incorporated, Inc. 262010-04-22

PSI

LEVEL2 and LEVEL3 sizes

Copyright © 2010 Paladin Software Incorporated, Inc. 27

level 2

128 12.5 8.8 9.9 11.5 15.1

64 7.6 8.0 7.0 8.5 12.5

32 6.1 5.5 6.8 7.6 11.4

16 5.5 4.9 5.5 7.2 10.4

8 16 32 64 128

level 3
2010-04-22

PSI

BitSet (UML)

+BitSet()

+BitSet(int : nbits)

+and(i : int, j : int, b : SparseBitSet) : void

+andNot(i : int, j : int,

b : SparseBitSet) : void

+or(i : int, j : int, b : SparseBitSet) : void

+statistics() : String

+statistics(String[] values) : String

+toStringCompaction(boolean change) : void

+toStringCompaction(int count) : void

+xor(i : int, j : int, b : SparseBitSet) : void

Made possible the easy addition
of bounded operations (almost
impossible to compose using
the given operations).

Added methods to report the
internal statistics of the class (to
help with memory
management).

Added an option to shorten the
toString output
(for “(1, 2, 3, 4, 8)” give
“(1..4, 8)”.

Copyright © 2010 Paladin Software Incorporated, Inc. 282010-04-22

PSI

So How Did It Do?

2010-04-22 29Copyright © 2010 Paladin Software Incorporated, Inc.

BitSet
Sparse
(hash) %

Sparse
(VM) %

Set/flip/clear 1 6.42 5.16 80 4.53 71

Set/flip/clear 2 2.13 4.00 188 2.55 120

Get (bulk) 26.00 8.58 33 1.48 6

Random set/get/clear individual bits 6.50 6.14 94 5.67 87

Performance comparison 24.93 1.97 8 6.76 27

Set/flip/clear 1 Sets bits 0 to 100,000,000 individually, and flips them, then sets them again, and

clears them.

Set/flip/clear 2 Bulk sets bits 0 to 1,000,000, and bits 4,000,000 to 10,000,000, bulk flips them, the

does it again, and clears them, repeated 300 times.

Get(bulk) Gets a new set (with bits 0 to 100,000 and bits 9,900,000 to 10,000,000 set) from an

existing set 20,000 times

Random etc. Sets random bits in the range 0 to 10,000, 10,000 times, does a get on each bit, and

then clears it, the whole sequence done 8,000 times

Performance A mixture of operations, including construction, setting, getting, clearing, doing various

and, or, and xor operations, checking cardinality and hashCode, cloning, and finding

intersections, done 100,000 times.

PSI

And this started with memory concerns

For 226 64-bit words the overhead is approximately:

215 32-bit pointers to areas

215 areas with 32 32-bit pointers plus 1 word object overhead

220 words of overhead across all the blocks.

which gives ~0.03 32-bit words overhead per 64 bits.

Copyright © 2010 Paladin Software Incorporated, Inc. 302010-04-22

32768

1081344

1048576

2162688

PSI

The Experience

There is no way that the final structure and
algorithmic behavior of this component could
have been predicted, designed, or otherwise
anticipated at the beginning of the project.

The Computer Science contributed as a source
of techniques and their properties: hashing,
hash tables, linked lists, bit vectors, object
pooling, and design patterns.

The engineering practices of constant testing,
prototyping, performance and resource
measurement, benefit trade-offs, tooling, and
version tracking both indicated and constrained
choices.

But these disciplines do not capture the entirety
of the experience!

Copyright © 2010 Paladin Software Incorporated, Inc. 312010-04-22

PSI

The Bottom Line

Developing effective and correct software (applications,
components, libraries, etc.) requires understanding the
possible—this is the Computer Science.

Developing efficient and useful software is a trade-off
between many issues (more than just space and time,
resources, and cost), that constitute the practice of
Software Engineering.

But there remains that activity that lies between
inspiration and perspiration, which is not Computer
Science, and which is not Software Engineering, for
which no name but “hacking” currently exists.

The challenge, here, and elsewhere, is how to teach this
skill (?), and how to bring new programmers to the place
where they experience the reward.

Copyright © 2010 Paladin Software Incorporated, Inc. 322010-04-22

PSI

Thank you!

Copyright © 2010 Paladin Software Incorporated, Inc. 332010-04-22

Is it Computer Science,

Software Engineering, or

Hacking?

Dr. Bruce K. Haddon

Bruce.Haddon@colorado.edu

Paladin Software International
I N C O R P O R A T E D

2010-04-22

PSI

Copyright © 2000 - 2007 Paladin Software Incorporated, Inc. 352007-05-24

